Stem cell proliferation and differentiation and stochastic bistability in gene expression

2007 ◽  
Vol 104 (1) ◽  
pp. 162-169 ◽  
Author(s):  
V. P. Zhdanov
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Sota Iwatani ◽  
Akemi Shono ◽  
Makiko Yoshida ◽  
Keiji Yamana ◽  
Khin Kyae Mon Thwin ◽  
...  

Mesenchymal stem cells (MSCs) are a heterogeneous cell population that is isolated initially from the bone marrow (BM) and subsequently almost all tissues including umbilical cord (UC). UC-derived MSCs (UC-MSCs) have attracted an increasing attention as a source for cell therapy against various degenerative diseases due to their vigorous proliferation and differentiation. Although the cell proliferation and differentiation of BM-derived MSCs is known to decline with age, the functional difference between preterm and term UC-MSCs is poorly characterized. In the present study, we isolated UC-MSCs from 23 infants delivered at 22–40 weeks of gestation and analyzed their gene expression and cell proliferation. Microarray analysis revealed that global gene expression in preterm UC-MSCs was distinct from term UC-MSCs. WNT signaling impacts on a variety of tissue stem cell proliferation and differentiation, and its pathway genes were enriched in differentially expressed genes between preterm and term UC-MSCs. Cell proliferation of preterm UC-MSCs was significantly enhanced compared to term UC-MSCs and counteracted by WNT signaling inhibitor XAV939. Furthermore, WNT2B expression in UC-MSCs showed a significant negative correlation with gestational age (GA). These results suggest that WNT signaling is involved in the regulation of GA-dependent UC-MSC proliferation.


2013 ◽  
Vol 52 (4) ◽  
pp. 633-650 ◽  
Author(s):  
Ismael Galve-Roperh ◽  
Valerio Chiurchiù ◽  
Javier Díaz-Alonso ◽  
Monica Bari ◽  
Manuel Guzmán ◽  
...  

2010 ◽  
Vol 107 (5) ◽  
pp. 1876-1881 ◽  
Author(s):  
Chunnian Zhao ◽  
GuoQiang Sun ◽  
Shengxiu Li ◽  
Ming-Fei Lang ◽  
Su Yang ◽  
...  

Neural stem cell self-renewal and differentiation is orchestrated by precise control of gene expression involving nuclear receptor TLX. Let-7b, a member of the let-7 microRNA family, is expressed in mammalian brains and exhibits increased expression during neural differentiation. However, the role of let-7b in neural stem cell proliferation and differentiation remains unknown. Here we show that let-7b regulates neural stem cell proliferation and differentiation by targeting the stem cell regulator TLX and the cell cycle regulator cyclin D1. Overexpression of let-7b led to reduced neural stem cell proliferation and increased neural differentiation, whereas antisense knockdown of let-7b resulted in enhanced proliferation of neural stem cells. Moreover, in utero electroporation of let-7b to embryonic mouse brains led to reduced cell cycle progression in neural stem cells. Introducing an expression vector of Tlx or cyclin D1 that lacks the let-7b recognition site rescued let-7b-induced proliferation deficiency, suggesting that both TLX and cyclin D1 are important targets for let-7b-mediated regulation of neural stem cell proliferation. Let-7b, by targeting TLX and cyclin D1, establishes an efficient strategy to control neural stem cell proliferation and differentiation.


Sign in / Sign up

Export Citation Format

Share Document