Effect of a weak magnetic field on resonant features of conductance in an open circular billiard with Dresselhaus spin-orbit interaction

2013 ◽  
Vol 117 (6) ◽  
pp. 1109-1114 ◽  
Author(s):  
A. I. Malyshev ◽  
G. G. Isupova
2009 ◽  
Vol 87 (10) ◽  
pp. 1059-1064
Author(s):  
S. C. Joshi

By extending the study of dyonic harmonic oscillator and dyonium in the presence of an external magnetic field, the possibility of observation of dyons has been explored. The splitting in energy levels of dyonium under the influence of a weak magnetic field has been undertaken with inclusion of spin-orbit interaction, and it is observed that the energy level splits into nondegenerate as well doubly degenerate states. The effect of a strong magnetic field on dyonium has also been carried out by treating spin-orbit interaction as a perturbation, leading to interesting results.


Author(s):  
J. Nitta

This chapter focuses on the electron spin degree of freedom in semiconductor spintronics. In particular, the electrostatic control of the spin degree of freedom is an advantageous technology over metal-based spintronics. Spin–orbit interaction (SOI), which gives rise to an effective magnetic field. The essence of SOI is that the moving electrons in an electric field feel an effective magnetic field even without any external magnetic field. Rashba spin–orbit interaction is important since the strength is controlled by the gate voltage on top of the semiconductor’s two-dimensional electron gas. By utilizing the effective magnetic field induced by the SOI, spin generation and manipulation are possible by electrostatic ways. The origin of spin-orbit interactions in semiconductors and the electrical generation and manipulation of spins by electrical means are discussed. Long spin coherence is achieved by special spin helix state where both strengths of Rashba and Dresselhaus SOI are equal.


Sign in / Sign up

Export Citation Format

Share Document