Wave Processes in Rotating Compressible Astrophysical Plasma Flows with Stable Stratification

2020 ◽  
Vol 131 (6) ◽  
pp. 1032-1055 ◽  
Author(s):  
M. A. Fedotova ◽  
A. S. Petrosyan
Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 87
Author(s):  
Maria Fedotova ◽  
Dmitry Klimachkov ◽  
Arakel Petrosyan

New observational data and modeling of physical processes constantly appear in the young and rapidly developing branch of science of plasma astrophysics. However, there is a lack of theoretical studies in the field of plasma astrophysics, that could unite the physics of various objects in the Universe, explain the observed phenomena and contribute to the improvement of numerical modeling schemes efficiency. This article makes up for this shortcoming by introducing different models, taking into account the various properties of plasma objects. We present a review of the latest magnetohydrodynamic theories of wave processes in rotating astrophysical plasma, taking into account important and common properties of astrophysical objects as compressibility and stratification.


1997 ◽  
Vol 78 (03) ◽  
pp. 1150-1156 ◽  
Author(s):  
Christina Jern ◽  
Heléne Seeman-Lodding ◽  
Bjӧrn Biber ◽  
Ola Winsӧ ◽  
Sverker Jern

SummaryExperimental data indicate large between-organs variations in rates of synthesis of tissue-type plasminogen activator (t-PA), which may reflect important differences in the capacity for constitutive and stimulated t-PA release from the vascular endothelium. In this report we describe a new multiple-organ experimental in vivo model for simultaneous determinations of net release/uptake rates of t-PA across the coronary, splanchnic, pulmonary, and hepatic vascular beds. In eleven intact anesthetized pigs, blood samples were obtained simultaneously from the proximal aorta, coronary sinus, pulmonary artery, and portal and hepatic veins. Plasma flows were monitored separately for each vascular region. Total plasma t-PA was determined by ELISA with a porcine t-PA standard. Regional net release/uptake rates were defined as the product of arteriovenous concentration gradients and local plasma flows. The net release of t-PA across the splanchnic vascular bed was very high, with a mean output of 1,919 ng total t-PA X min-1 (corresponding to 90 ng per min and 100 g tissue). The net coronary t-PA release was 68 ng X min-1 (30 ng X min-1 X 100 g"1)- Pulmonary net fluxes of t-PA were variable without any significant net t-PA release. The net hepatic uptake rate was 4,855 ng X min-1 (436 ng X min-1 X 100 g-1). Net trans-organ changes of active t-PA mirrored those of total t-PA. The results demonstrate marked regional differences in net release rates of t-PA in vivo. The experimental model we present offers new possibilities for evaluation of regional secretion patterns in the intact animal.


2013 ◽  
Vol 19 (1(80)) ◽  
pp. 13-19
Author(s):  
V.A. Shuvalov ◽  
◽  
A.A. Lukenjuk ◽  
N.I. Pismenny ◽  
S.N. Kulagin ◽  
...  

Author(s):  
Nikolai Cherenda ◽  
Andrej K. Kuleshov ◽  
Vitali I. Shymanski ◽  
Vladimir V. Uglov ◽  
N. V. Bibik ◽  
...  

Author(s):  
I. P. Smyaglikov ◽  
N. I. Chubrik ◽  
S.V. Goncharik ◽  
V. V. Azharonok ◽  
L. E. Krat'ko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document