carbon plasma
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Henri Weisen ◽  
Paula Sirén ◽  
Jari Varje

Abstract Simulations of the DD neutron rates predicted by the ASCOT and TRANSP Monte Carlo heating codes for a diverse set of JET-C (JET with carbon plasma facing components) plasmas are compared. A previous study [1] of this data set using TRANSP found that the predicted neutron rates systematically exceeded the measured ones by factors ranging between 1 and 2. No single explanation for the discrepancies was found at the time despite a large number of candidates, including anomalous fast ion loss mechanisms, having been examined. The results shed doubt on our ability to correctly predict neutron rates also in the Deuterium-Tritium plasmas expected in the JET D-T campaign (DTE2). For the study presented here the calculations are independently repeated using ASCOT with different equilibria and independent mapping of the profiles of temperature and density to the computational grid. Significant differences are observed between the results from the investigations with smaller systematic differences between neutron rates measurements and predictions for the ones using ASCOT. These are traced back not to intrinsic differences between the ASCOT and TRANSP codes, but to the differences in profiles and equilibria used. These results suggest that the discrepancies reported in ref[1] do not require invoking any unidentified plasma processes responsible for the discrepancies and highlight the sensitivity of such calculations to the plasma equilibrium and the necessity of a careful mapping of the profiles of the ion and electron densities and temperatures.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 584
Author(s):  
Rui Dang ◽  
Liqiu Ma ◽  
Shengguo Zhou ◽  
Deng Pan ◽  
Bin Xia

Ultra-high molecular weight polythene (UHMWPE), with outstanding characteristics, is widely applied in modern industry, while it is also severely limited by its inherent shortcomings, which include low hardness, poor wear resistance, and easy wear. Implementation of feasible protection on ultra-high molecular weight polythene to overcome its shortcomings would be of significance. In the present study, amorphous carbon (a-C) film was fabricated on ultra-high molecular weight polythene (UHMWPE) to provide good protection, and the relevant growth mechanism of a-C film was revealed by controlling carbon plasma currents. The results showed the in situ transition layer, in the form of chemical bonds, was formed between the UHMWPE substrate and the a-C film with the introduction of carbon plasma, which provided strong adhesion, and then the a-C film continued epitaxial growth on the in situ transition layer with the treatment of carbon plasma. This in situ growth of a-C film, including the in situ transition layer and the epitaxial growth layer, significantly improved the wetting properties, mechanical properties, and tribological properties of UHMWPE. In particular, good protection by in situ growth a-C film on UHMWPE was achieved during sliding wear.


2021 ◽  
Vol 129 (5) ◽  
pp. 053305
Author(s):  
Petru-Edward Nica ◽  
Cristian Ursu ◽  
Cristian Focsa

2021 ◽  
Vol 1799 (1) ◽  
pp. 012026
Author(s):  
A P Rubshtein ◽  
V A Zavalishin ◽  
A B Vladimirov ◽  
S A Plotnikov

2020 ◽  
Vol 644 ◽  
pp. A92
Author(s):  
Jiaolong Zeng ◽  
Yongjun Li ◽  
Yong Hou ◽  
Cheng Gao ◽  
Jianmin Yuan

Recent quantitative experiments on the ionization potential depression (IPD) in dense plasma show that the observational results are difficult to explain with the widely used analytical models for plasma screening. Here, we investigate the effect of plasma screening on the IPD and ionization balance of dense carbon plasma under solar and stellar interior conditions using our developed consistent nonanalytical model. The screening potential can be primarily attributed to the free electrons in the plasma and is determined by the microspace distribution of these free electrons. The ionization balance is determined by solving the Saha equation, including the effect of IPD. The predicted IPD and average ionization degree are larger than those obtained using the Stewart–Pyatt model for mass densities that are greater than 3.0 g cm−3. Under solar interior conditions, our results are in better agreement with the Ecker–Kröll model at electron temperatures and densities lower than 250 eV and 2.1 × 1023 cm−3 and in the best agreement with the ion-sphere model at 303 eV and 4.3 × 1023 cm−3. Finally, our results are compared with those obtained via a recent experiment on a CH-mixture plasma that has been compressed six times. The predicted average ionization degree of C in a CH mixture agrees better with the experiment than the Stewart–Pyatt and Thomas–Fermi models when the screening from free electrons contributed by hydrogen atoms is included. Our results provide useful information concerning the ionization balance and can be applied to investigate the opacity and equations of state for dense plasma under the solar and stellar interior conditions.


2020 ◽  
pp. 000370282097160
Author(s):  
Houssyen Yousfi ◽  
Samira Abdelli-Messaci ◽  
Ourida Ouamerali ◽  
Azeddine Dekhira

Laser-induced carbon plasma in air undergoes various physicochemical processes that affect the kinetic chemistry of species of the plasma plume. We report the time- and space-resolved characterization of carbon plasma produced by infrared nanosecond laser into air at atmospheric pressure. Investigating the laser fluence effect highlights dissociation for fluences >40 J cm−2, and recombination processes in the fluence range of 10–40 J cm−2. Emission intensities of C2 and CN molecules undergo an enhancement at specific spatiotemporal locations in the laser-induced plasma. At a value of 27 J/cm2 and 0.8 mm from the plasma ignition, molecular band formation is favored for the specific temperature and density values of 1.7 × 1015 cm−3 and 9502 K. The vibrational temperatures of molecules are determined using nonlinear spectral data fitting program. The shock front between laser-induced carbon plasma and air may lead to a significant shock wave that affects the occurrence of molecular CN and C2 formation. This can be explained by the distinct temperatures exhibited by CN and C2 molecules with laser fluence. The atomic carbon travels farther to react and form C2, where the ionization–recombination process plays a significant role in its formation. Collisions of C with N neutrals and N2 molecules are the plausible origin of CN generation. Moreover, the density of CN in the plasma depends on C2 molecules.


Sign in / Sign up

Export Citation Format

Share Document