Sea-level muon spectrum in the energy range 1–10 TeV from the data of underground experiments

2006 ◽  
Vol 69 (3) ◽  
pp. 460-474 ◽  
Author(s):  
A. A. Lagutin ◽  
A. V. Yushkov
Keyword(s):  
1977 ◽  
Vol 55 (7-8) ◽  
pp. 629-631
Author(s):  
Kalpana Sarkar ◽  
D. P. Bhattacharyya ◽  
D. Basu

The sea level muon spectrum is estimated from the Goddard Space Flight Centre group measured nucleon spectrum by using the model of Cocconi, Koester, and Perkins (CKP). The derived muon spectrum agrees well with the magnetic spectrograph data of Ayre, Baxendale, Hume, Nandi, Thompson, and Whalley when the energy dependence of pion inelasticity (Kπ) in the CKP model is assumed in the pion energy range 10–500 GeV. Above 50 GeV pion energy (Eπ) the pion inelasticity follows the relation Kπ = 0.1 ln Eπ.


1979 ◽  
Vol 57 (7) ◽  
pp. 921-925 ◽  
Author(s):  
A. K. Chakrabarti ◽  
A. K. Das ◽  
A. K. De

Using the recent ISR data of proton–proton interactions on the inclusive production of pions and nucleons, realistic values of the mean pion inelasticity Kπ and the mean nucleon inelasticity KT have been estimated. These values have been used for the derivation of the sea level differential muon spectrum from the primary nucleon spectrum and vice versa using the CKP model as an extension of the work presented in an earlier article. It is found that none of the measured primary nucleon spectra of Ryan, Ormes, and Balasubrahmanyan and Grigorov, Rapoport, and Shestoperov fit any of the precisely measured muon spectra of Ayre, Baxendale, Hume, Nandi, Thompson, and Whalley and Allkofer, Carstensen, and Dau in spectral shape or the absolute value. On the other hand good agreement between the derived muon spectra and the spectra of Allkofer et al. and Ayre et al. is found if the primary nucleon spectra of the forms, N(Ep) = (1.38 ± 0.08)Ep−2.59 and N(Ep) = (1.00 ± 0.10)Ep−2.55, respectively, are assumed. The first form is comparable with that obtained by Brooke, Hayman, Kamiya, and Wolfendale following more approximate but similar procedure. It is also not unjustified when compared with the measured primary all nuclei spectrum of Grigorov et al. in the light of suggestions made by Ellsworth, Ito, Macfall, Siohan, Streitmatter, Tonwar, Vishwanath, Yodh, and Balasubrahmanyan. By comparing the pion production spectra derived from the same primary nucleon spectrum but using the CKP and the scaling models, it is concluded that the results are sensitive to the model assumed for the collisions.


1978 ◽  
Vol 31 (5) ◽  
pp. 451 ◽  
Author(s):  
DP Bhattacharyya

A study is made of the influence of long-term solar modulation on the low energy sea level muon spectrum near the geomagnetic equator. Recent experimental data are compared with theoretical results calculated from the phenomenological model of Allkofer and Dau. It is suggested that the observed enhancement in the muon intensity is mainly due to a shift in the solar potential.


1976 ◽  
Vol 54 (18) ◽  
pp. 1880-1883 ◽  
Author(s):  
Deba Prasad Bhattacharyya

The pion and kaon spectra in the top of the atmosphere have been derived from the satellite data of cosmic ray nucleons by using the Bose-type distribution of secondary mesons produced in the inclusive reactions p + p → π− + X and p + p → K− + X. The derived pion and kaon spectra follow the relations of the form π(Eπ) dEπ = 0.184Eπ−2.6 dEπ and K(Ek) dEk = 0.036 Ek−2.6 dEk. With the help of the diffusion equation for pions and kaons in the atmosphere, the sea level muon spectrum has been derived and the results have been compared with the magnetic spectrograph data of Allkofer, Carstensen, and Dau in the muon momentum range 15–1000 GeV/c. The sea level muon intensity arising from kaon parentage increases with energy.


The rate of energy loss of muons is examined by com paring the observed depth-intensity relation with that predicted from a knowledge of the sea-level energy spectrum of cosmic ray muons. The evidence for each of the parameters entering into the analysis is assessed and estimates are made of the sea-level muon spectrum up to 10000 GeV and the depth-intensity relation down to 7000 m.w.e. The effect of range-straggling on the underground intensities is considered and shown to be important at depths below 1000 m.w.e. Following previous workers the energy loss relation is written as -d E /d x =1.88+0.077 in E ' m / mc 2 + b E MeV g -1 cm 2 , where E ' m is the maximum transferrable energy in a /i-e collision and m is the muon mass. The first two terms give the contribution from ionization (and excitation) loss and the third term is the combined contribution from pair production, bremsstrahlung and nuclear interaction. The best estimate of the coefficient b from the present work is b = (3.95 + 0.25) x 10 -6 g -1 cm 2 over the energy range 500 to 10000 GeV, which is close to the theoretical value of 4.0 x 10 -6 g -1 cm 2 . It is concluded that there is no evidence for any marked anomaly in the energy loss processes for muons of energies up to 10000 GeV.


1977 ◽  
Vol 489 (3) ◽  
pp. 164-168 ◽  
Author(s):  
D. P. Bhattacharyya
Keyword(s):  

1983 ◽  
Vol 6 (6) ◽  
pp. 569-594 ◽  
Author(s):  
L. Bergamasco ◽  
A. Castellina ◽  
B. D'Ettorre Piazzoli ◽  
G. Mannocchi ◽  
P. Picchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document