The sea-level muon spectrum and charge ratio and their relationship with high-energy accelerator data

1977 ◽  
Vol 3 (1) ◽  
pp. 97-119 ◽  
Author(s):  
M G Thompson ◽  
M R Whalley

The rate of energy loss of muons is examined by com paring the observed depth-intensity relation with that predicted from a knowledge of the sea-level energy spectrum of cosmic ray muons. The evidence for each of the parameters entering into the analysis is assessed and estimates are made of the sea-level muon spectrum up to 10000 GeV and the depth-intensity relation down to 7000 m.w.e. The effect of range-straggling on the underground intensities is considered and shown to be important at depths below 1000 m.w.e. Following previous workers the energy loss relation is written as -d E /d x =1.88+0.077 in E ' m / mc 2 + b E MeV g -1 cm 2 , where E ' m is the maximum transferrable energy in a /i-e collision and m is the muon mass. The first two terms give the contribution from ionization (and excitation) loss and the third term is the combined contribution from pair production, bremsstrahlung and nuclear interaction. The best estimate of the coefficient b from the present work is b = (3.95 + 0.25) x 10 -6 g -1 cm 2 over the energy range 500 to 10000 GeV, which is close to the theoretical value of 4.0 x 10 -6 g -1 cm 2 . It is concluded that there is no evidence for any marked anomaly in the energy loss processes for muons of energies up to 10000 GeV.


1976 ◽  
Vol 54 (21) ◽  
pp. 2173-2177 ◽  
Author(s):  
R. K. Roychowdhury ◽  
D. P. Bhattacharyya

The ISR data on p + p → Π− + X reactions can be represented with the help of a scaling variable η = 2 pT2x/ln (s/s0) for 0.075 ≤ x ≤ 0.3 and 0.2 ≤ pT ≤ 1.5 GeV/c. The data at different energies follow the relation[Formula: see text]where s0 = 1 GeV, A = 46.06, a = 85, and b = 510. This scaling variable has been used to derive the sea level muon spectrum and the result agrees with the magnetic spectrograph data.


1979 ◽  
Vol 32 (4) ◽  
pp. 369 ◽  
Author(s):  
DP Bhattacharyya ◽  
RK Roychoudhury

The sea level cosmic ray spectrum and muon charge ratio have been estimated by using the energy moments of the cross section for proton-air inelastic collisions. These energy moments have been determined by interpolation from CERN results for proton-nucleus inelastic interactions in pion production. The derived results are compared with previous work.


1966 ◽  
Vol 21 (8) ◽  
pp. 1205-1210
Author(s):  
O. C. Allkofer ◽  
E. Kraft

The momentum spectrum of cosmic ray muons and the charge ratio at 5200 m above sea level have been measured. To separate the spectrum of muons from the total spectrum a lead absorber was used. From theoretical models the spectrum of muons is calculated. Good agreement is found between the calculated and measured muon spectrum.


The Holocene ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Manel Leira ◽  
Maria C Freitas ◽  
Tania Ferreira ◽  
Anabela Cruces ◽  
Simon Connor ◽  
...  

We examine the Holocene environmental changes in a wet dune slack of the Portuguese coast, Poço do Barbarroxa de Baixo. Lithology, organic matter, biological proxies and high-resolution chronology provide estimations of sediment accumulation rates and changes in environmental conditions in relation to sea-level change and climate variability during the Holocene. Results show that the wet dune slack was formed 7.5 cal. ka BP, contemporaneous with the last stages of the rapid sea-level rise. This depositional environment formed under frequent freshwater flooding and water ponding that allowed the development and post-mortem accumulation of abundant plant remains. The wetland evolved into mostly palustrine conditions over the next 2000 years, until a phase of stabilization in relative sea-level rise, when sedimentation rates slowed down to 0.04 mm yr−1, between 5.3 and 2.5 cal. ka BP. Later, about 0.8 cal. ka BP, high-energy events, likely due to enhanced storminess and more frequent onshore winds, caused the collapse of the foredune above the wetlands’ seaward margin. The delicate balance between hydrology (controlled by sea-level rise and climate change), sediment supply and storminess modulates the habitat’s resilience and ecological stability. This underpins the relevance of integrating past records in coastal wet dune slacks management in a scenario of constant adaptation processes.


1979 ◽  
Vol 57 (7) ◽  
pp. 921-925 ◽  
Author(s):  
A. K. Chakrabarti ◽  
A. K. Das ◽  
A. K. De

Using the recent ISR data of proton–proton interactions on the inclusive production of pions and nucleons, realistic values of the mean pion inelasticity Kπ and the mean nucleon inelasticity KT have been estimated. These values have been used for the derivation of the sea level differential muon spectrum from the primary nucleon spectrum and vice versa using the CKP model as an extension of the work presented in an earlier article. It is found that none of the measured primary nucleon spectra of Ryan, Ormes, and Balasubrahmanyan and Grigorov, Rapoport, and Shestoperov fit any of the precisely measured muon spectra of Ayre, Baxendale, Hume, Nandi, Thompson, and Whalley and Allkofer, Carstensen, and Dau in spectral shape or the absolute value. On the other hand good agreement between the derived muon spectra and the spectra of Allkofer et al. and Ayre et al. is found if the primary nucleon spectra of the forms, N(Ep) = (1.38 ± 0.08)Ep−2.59 and N(Ep) = (1.00 ± 0.10)Ep−2.55, respectively, are assumed. The first form is comparable with that obtained by Brooke, Hayman, Kamiya, and Wolfendale following more approximate but similar procedure. It is also not unjustified when compared with the measured primary all nuclei spectrum of Grigorov et al. in the light of suggestions made by Ellsworth, Ito, Macfall, Siohan, Streitmatter, Tonwar, Vishwanath, Yodh, and Balasubrahmanyan. By comparing the pion production spectra derived from the same primary nucleon spectrum but using the CKP and the scaling models, it is concluded that the results are sensitive to the model assumed for the collisions.


Author(s):  
Maurizio D'Anna ◽  
Deborah Idier ◽  
Bruno Castelle ◽  
Goneri Le Cozannet ◽  
Jeremy Rohmer ◽  
...  

Chronic erosion of sandy coasts is a continuous potential threat for the growing coastal communities worldwide. The prediction of shoreline evolution is therefore key issue for robust decision making worldwide, especially in the context of climate change. Shorelines respond to various complex processes interacting at several temporal and spatial scales, making shoreline reconstructions and predictions challenging and uncertain, especially on long time scales (e.g. decades or century). Despite the increasing progresses in addressing uncertainties related to the physics of Sea Level Rise, very little effort is made towards understanding and reducing the uncertainties related to wave driven coastal response. To fill this gap, we analyse the uncertainties associated with long-term (2 decades) modelling of the cross-shore transport dominated high-energy sandy coast around Truc Vert beach, SW France, which has been surveyed semi-monthly over the last 12 years.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/_NBJ2v-koMs


Sign in / Sign up

Export Citation Format

Share Document