Localization and Amplification of the Electromagnetic Field in a Globular Photonic Crystal

2019 ◽  
Vol 82 (12) ◽  
pp. 1672-1673
Author(s):  
S. V. Pichkurenko ◽  
V. V. Filatov
Author(s):  
Anja Schönhardt ◽  
Dietmar Nau ◽  
Christina Bauer ◽  
André Christ ◽  
Hedi Gräbeldinger ◽  
...  

We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs 2 and 5000 fs 2 are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances. This article is part of the themed issue ‘New horizons for nanophotonics’.


2011 ◽  
Vol 276 ◽  
pp. 012071
Author(s):  
LIU Fa ◽  
XU Chen ◽  
XIE Yi-Yang ◽  
ZHAO Zhen-Bo ◽  
ZHOU Kang ◽  
...  

2005 ◽  
Vol 19 (05) ◽  
pp. 869-878 ◽  
Author(s):  
JIANPING SHI ◽  
XIANZHONG CHEN ◽  
XUNAN CHEN ◽  
HANMIN YAO ◽  
GAIRONG YANG ◽  
...  

We report optical second harmonic generation (OSHG) in a two dimension photonic crystal of centro-symmetric dielectric based on finite difference time domain (FDTD) algorithm. The electromagnetic field distribution in the structure and the intensity of second harmonic (SH) from electric quadrupole polarization along the waveguide are analyzed. The results show that the acute spatial variation of electromagnetic field results in the radiation of SH, and the intensity is proportional to the square of waveguide length. When the beam intensity of the pumping wave is 1.3 MW/mm2, which has wavelength of 10.6 μm, the conversion efficiency of power is 0.307% for a photonic crystal of Silicon with a length of 40 μm.


2019 ◽  
Vol 33 (04) ◽  
pp. 1950037
Author(s):  
Natalia N. Konobeeva ◽  
Mikhail B. Belonenko

We consider the wave equation for an electromagnetic field propagating in silicene placed in photonic crystal (PC). We study the effects observed when the depth of the nonlinearity modulation are varied, as well as the initial amplitude of the electromagnetic pulse.


2021 ◽  
Vol 1047 ◽  
pp. 134-139
Author(s):  
Vladimir Filatov ◽  
Vladimir Gorelik ◽  
Svetlana Pichkurenko

Axion is the dark particle introduced to the quantum chromodynamics to solve the strong CP-problem. Because of its dark nature, there are many indirect evidences, but axion itself have not been registered till now. In the paper, we report the observation of dark axion-like particles formed by the polariton coupling in the resonant microcavity of a globular photonic crystal. To overcome the very small cross-section, we use the Bose-Einstein condensation of polaritons into the nearest-to-the-surface microcavity of an opal-like globular photonic crystal. This way, the synchronicity conditions are met and all polaritons have the same wavefunction to be coupled. Moreover, the giant density of states of a Bose-condensate makes polariton coupling not only allowed but stimulated. At the experiment, we observe “Light Shining through a Wall” Primakoff effect which proves dark particles. The additional spectral peak at the unitary polariton line of a maximal transparency of a crystal allows to differ bipolaritons from other particles. The results can be used not only to generate dark particles at a lab, but also to get a laboratory source of an optical-frequency gravitational waves.


2005 ◽  
Vol 13 (13) ◽  
pp. 4980 ◽  
Author(s):  
C. Dineen ◽  
J. Förstner ◽  
A.R. Zakharian ◽  
J.V. Moloney ◽  
S.W. Koch

Two-dimensional photonic crystals play important role in practical photonic devices. In this study, Hamiltonian method is used to determine the evolution equations for the fields. This method allows us to determine the polariton modes inside a periodically structured medium. For a two-dimensional photonic crystal, the Hamiltonian for electromagnetic field interaction with structured medium is constructed and the evolution equations for fields are determined from Hamilton’s equations of motion. The polariton modes are found from the canonical form of the Hamiltonian.


Sign in / Sign up

Export Citation Format

Share Document