Measurement of the Bragg Peak Depth by a Digital Imaging Detector and PPC-40 Ionization Camera

2020 ◽  
Vol 83 (6) ◽  
pp. 886-891
Author(s):  
V. V. Siksin
1998 ◽  
Vol 5 (3) ◽  
pp. 1079-1081
Author(s):  
Shigeru Kimura ◽  
Tatsuya Matsumura ◽  
Katsuyuki Kinoshita ◽  
Keiichi Hirano ◽  
Hiroshi Kihara

A Be-window-type X-ray zooming tube is an X-ray digital imaging system whose magnification factor of X-ray images can be easily varied from 10 to 200, and whose spatial resolution is less than 0.5 µm. This zooming tube was used as an imaging detector in double-crystal X-ray topography to obtain high-resolution images of dislocations in a silicon crystal. X-ray interference images of about 5 µm were observed even though optimal performance of the X-ray zooming tube could not be achieved. The results indicate that the X-ray zooming tube might make a good detector for X-ray topography with minor improvements in its stage structure.


Author(s):  
W.A. Carrington ◽  
F.S. Fay ◽  
K.E. Fogarty ◽  
L. Lifshitz

Advances in digital imaging microscopy and in the synthesis of fluorescent dyes allow the determination of 3D distribution of specific proteins, ions, GNA or DNA in single living cells. Effective use of this technology requires a combination of optical and computer hardware and software for image restoration, feature extraction and computer graphics.The digital imaging microscope consists of a conventional epifluorescence microscope with computer controlled focus, excitation and emission wavelength and duration of excitation. Images are recorded with a cooled (-80°C) CCD. 3D images are obtained as a series of optical sections at .25 - .5 μm intervals.A conventional microscope has substantial blurring along its optical axis. Out of focus contributions to a single optical section cause low contrast and flare; details are poorly resolved along the optical axis. We have developed new computer algorithms for reversing these distortions. These image restoration techniques and scanning confocal microscopes yield significantly better images; the results from the two are comparable.


Author(s):  
John F. Mansfield

The current imaging trend in optical microscopy, scanning electron microscopy (SEM) or transmission electron microscopy (TEM) is to record all data digitally. Most manufacturers currently market digital acquisition systems with their microscope packages. The advantages of digital acquisition include: almost instant viewing of the data as a high-quaity positive image (a major benefit when compared to TEM images recorded onto film, where one must wait until after the microscope session to develop the images); the ability to readily quantify features in the images and measure intensities; and extremely compact storage (removable 5.25” storage devices which now can hold up to several gigabytes of data).The problem for many researchers, however, is that they have perfectly serviceable microscopes that they routinely use that have no digital imaging capabilities with little hope of purchasing a new instrument.


Sign in / Sign up

Export Citation Format

Share Document