Study of the Spectral Composition of X-ray Emission from Different Regions of Micropinch Discharge Plasma

2019 ◽  
Vol 45 (3) ◽  
pp. 277-280
Author(s):  
A. V. Balovnev ◽  
O. A. Bashutin ◽  
I. G. Grigoryeva ◽  
G. Kh. Salakhutdinov
2018 ◽  
Vol 167 ◽  
pp. 03010
Author(s):  
Alexander Rupasov ◽  
Igor Romanov ◽  
Andrey Kologrivov ◽  
Viktor Paperny

X-ray spectral characteristics of a vacuum discharge plasma with the storage energy lower than 30 J initiated on an Al or a Fe cathode by a 1012 W/cm2 neodymium laser were studied in the 30 – 300 Å wavelength range. It is shown that both the spectral composition and intensity of radiation of a micropinch plasma produced in the cathode jet of the discharge are determined by parameters of the discharge and laser pulse. These parameters were optimized to achieve a regime in which a considerable part of radiation energy was concentrated in the long-wavelength band of the quasi-continuum (230 - 270 Å and 160 - 200 Å for Al and Fe, respectively), which makes this discharge a source of narrowband X-ray radiation.


2016 ◽  
Vol 74 (6) ◽  
pp. 1365-1375 ◽  
Author(s):  
Chensi Shen ◽  
Shaoshuai Wu ◽  
Hui Chen ◽  
Sadia Rashid ◽  
Yuezhong Wen

In order to prevent health risk from potential exposures to phthalates, a glow discharge plasma (GDP) process was applied for phthalate degradation in aqueous solution. The results revealed that the phthalate derivatives 4-hydroxyphthalic acid, 4-methylphthalic acid and 4-tert-butylphthalic anhydride could be degraded efficiently in GDP process (498 V, 0.2 A) with high removal efficiencies of over 99% in 60 minutes. Additionally, pyrite as a promising heterogeneous iron source in the Fenton reaction was found to be favorable for GDP process. The phthalate degradation reaction could be significantly enhanced by the continuous formation of •OH and the inhibition of the quenching reaction in the pyrite Fenton system due to the constant dissolution of Fe(II) from pyrite surface. Meanwhile, the initial pH value showed little impact on the degradation of phthalates and the energy efficiency of GDP system for phthalate degradation ranged between 0.280 × 10−9 and 1.210 × 10−9 mol/J, which is similar to the GDP system with phenol, bisphenol A and methyl tert-butyl ether as the substrates. Further, the X-ray diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy analyses indicated that the pyrite was relatively stable in GDP system and there was no obvious polymeric compound formed on the catalyst surface. Overall, this GDP process offers high removal efficiency, simple technology, considerable energy efficiency and the applicability to salt-containing phthalate wastewater.


2015 ◽  
Vol 71 ◽  
pp. 146-149 ◽  
Author(s):  
A.V. Balovnev ◽  
E.D. Vovchenko ◽  
I.G. Grigoryeva ◽  
E.I. Dodulad ◽  
A.S. Savelov ◽  
...  

2019 ◽  
Vol 47 (5) ◽  
pp. 2696-2702
Author(s):  
Sameer Nigam ◽  
Shreekant Barnwal ◽  
Aneesh Kodakkat ◽  
Manohar L. Sharma ◽  
Yelchuri B. S. R. Prasad ◽  
...  

10.14311/1123 ◽  
2009 ◽  
Vol 49 (2) ◽  
Author(s):  
M. Nevrkla

A device producing Z-pinching plasma as a source of XUV radiation is described. Here a ceramic capacitor bank pulse-charged up to 100 kV is discharged through a pre-ionized gas-filled ceramic tube 3.2 mm in diameter and 21 cm in length. The discharge current has amplitude of 20 kA and a rise-time of 65 ns. The apparatus will serve as experimental device for studying of capillary discharge plasma, for testing X-ray optics elements and for investigating the interaction of water-window radiation with biological samples. After optimization it will be able to produce 46.9 nm laser radiation with collision pumped Ne-like argon ions active medium. 


2020 ◽  
Vol 20 (3) ◽  
pp. 1773-1779
Author(s):  
Xuezhang Liu ◽  
Hangyu Long ◽  
Shenghua Hu ◽  
Kui Wen

Developing defects on the surface of TiO2 nanoparticles by mechanical treatment is a fascinating approach to enhance photocatalytic efficiency. However, it poses risks to producing bulk defects and phase transformation, which seriously deteriorates photocatalytic performance. Here, activating TiO2 nanoparticles was elaborately fulfilled by using dielectric barrier discharge plasma assisted ball milling (DBDP-milling) as it imposes plasma to nano-scaled particles along with soft mechanical impact. The evolution of surface properties of TiO2 nanoparticles with DBDP-milling durations was inspected using a Fourier transform infrared (FTIR) and an X-ray photoelectron spectrometer (XPS), while the morphology and structure were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. Results showed that DBDP-milling developed a considerable number of oxygen vacancies in TiO2 nanoparticles as well as bulk defects free. These TiO2 nanoparticles formed agglomerates with BET surface area of 37.40 m2/g and exhibited enhanced photocatalytic efficiency.


2018 ◽  
Vol 63 (2) ◽  
pp. 62-64 ◽  
Author(s):  
А. Белоусов ◽  
A. Belousov ◽  
Г. Крусанов ◽  
G. Krusanov ◽  
А. Черняев ◽  
...  

Purpose: Determining the absorbed dose produced by photons, it is often assumed that it is equal to the radiation kerma. This assumption is valid only in the presence of an electronic equilibrium, which in turn is never ensured in practice. It leads to some uncertainty in determining the absorbed dose in the irradiated sample during radiobiological experiments. Therefore, it is necessary to estimate the uncertainty in determining the relative biological effectiveness of X-rays associated with uncertainty in the determination of the absorbed dose. Material and methods: The monochromatic X-ray photon emission is simulated through a standard 25 cm2 plastic flask containing 5 ml of the model culture medium (biological tissue with elemental composition C5H40O18N). The calculation of the absorbed dose in a culture medium is carried out in two ways: 1) the standard method, according to which the ratio of the absorbed dose in the medium and the ionization chamber is equal to the ratio of kerma in the medium and air; 2) determination of the absorbed dose in the medium and in the sensitive volume of the ionization chamber by computer simulation and calculating the ratio of these doses. For each primary photon energies, 108 histories are modeled, which makes it possible to achieve a statistical uncertainty not worse than 0.1 %. The energy step was 1 keV. The spectral distribution of X-ray energy is modeled separately for each set of anode materials, thickness and materials of the primary and secondary filters. The specification of the X-ray beams modeled in this work corresponds to the standards ISO 4037 and IEC 61267. Within the linear-quadratic model, the uncertainty of determining the RBEmax values is directly proportional to the uncertainty in the determination of the dose absorbed by the sample under study. Results: At energy of more than 60 keV, the ratios for water and biological tissue practically do not differ. At lower energies, up to about 20 keV, the ratio of the coefficients of air and water is slightly less than that of air and biological tissue. The maximum difference is ~ 1 % than usual and the equality of absorbed doses in the ionization chamber and sample is justified. At photon energy of 60 keV for the geometry in question, the uncertainty in determining the dose is about 50 %. For non-monochromatic radiation, the magnitude of the uncertainty is determined by the spectral composition of the radiation, since the curves vary greatly in the energy range 10–100 keV. It is shown that, depending on the spectral composition of X-ray radiation, uncertainty in the determination of the absorbed dose can reach 40–60 %. Such large uncertainty is due to the lack of electronic equilibrium in the radiation geometry used in practice. The spread of RBE values determined from the data of radiobiological experiments carried out by different authors can be determined both by differences in the experimental conditions and by uncertainty in the determination of the absorbed dose. Using Fricke dosimeters instead of ionization chambers in the same geometry allows you to reduce the uncertainty approximately 2 times, up to 10–30 %. Conclusion: The computer simulation of radiobiological experiments to determine the relative biological effectiveness of X-ray radiation is performed. The geometry of the experiments corresponds to the conditions for the use of standard bottles placed in the side holders. It is shown that the ratio of absorbed doses and kerma in the layers of biological tissue and air differ among themselves with an uncertainty up to 60 %. Depending on the quality of the beam, the true absorbed dose may differ from the one calculated on the assumption of kerma and dose equivalence by 50 %. Uncertainty in determining the RBE in these experiments is of the same order. The results are presented for X-ray beams with negligible fraction of photons with energies less than 10 keV. For beams of a different quality, the uncertainty in determination can significantly increase. For the correct evaluation of RBE, it is necessary to develop a uniform standard for carrying out radiobiological experiments. This standard should regulate both the geometry of the experiments and the conduct of dosimetric measurements.


2007 ◽  
Vol 33 (7) ◽  
pp. 562-566
Author(s):  
V. I. Afonin ◽  
A. M. Gafarov ◽  
O. N. Gilev ◽  
V. I. Ponomarev ◽  
N. N. Pkhaĭko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document