Competition between domain walls and the reverse magnetization in the magnetic relaxation of a Pt/Co/Ir/Co/Pt spin switcher

2018 ◽  
Vol 60 (1) ◽  
pp. 75-78
Author(s):  
R. B. Morgunov ◽  
G. L. L’vova ◽  
A. Hamadeh ◽  
S. Mangin
2018 ◽  
Vol 60 (1) ◽  
pp. 76
Author(s):  
Р.Б. Моргунов ◽  
Г.Л. Львова ◽  
A. Hamadeh ◽  
S. Mangin

AbstractA multilayer Pt/Co/Ir/Co/Pt/GaAs heterostructures demonstrates a long term (to several hours) magnetic relaxation between two stable states of the magnetization of the system. The magnetization reversal of the heterostructure layers occurs both due to the formation of nuclei of the reverse magnetization domains and as a result of their further growth by means of motion of domain walls. The competition between two these processes provides a nonexponential character of the magnetic relaxation. At 300 K, the contributions of these processes to the relaxation are commensurable, while, at temperatures lower than 200 K, the contribution of the nucleation is suppressed and the magnetic relaxation occurs as a result of motion of the domain walls.


1997 ◽  
Vol 39 (1) ◽  
pp. 99-100
Author(s):  
A. A. Bezlepkin ◽  
S. P. Kuntsevich ◽  
V. I. Kostyukov

2010 ◽  
Vol 660-661 ◽  
pp. 279-283 ◽  
Author(s):  
Marcos Flavio de Campos ◽  
José Adilson de Castro

In magnets based in phases with high magnetocrystalline anisotropy like Nd2Fe14B or SmCo5 there is a competition between magnetostatic energy and domain wall energies. If the grain size is large, the formation of domain walls is energetically favorable. When the formation of domain walls is an unfavorable process, coercivity is larger. A better comprehension of this phenomenon is possible if the energy necessary for the first domain wall formation is properly evaluated. To address this problem, the magnetostatic energy of a sphere magnetized in two opposite directions, separated by a domain wall, is calculated using Legendre Polynomials. The data allow the determination of the reversible volume for nucleation. It is predicted a “recoil effect”, the magnetization may be reversible until a given volume of reverse magnetization.


2020 ◽  
Vol 102 (14) ◽  
Author(s):  
Jamie R. Massey ◽  
Rowan C. Temple ◽  
Trevor P. Almeida ◽  
Ray Lamb ◽  
Nicolas A. Peters ◽  
...  

Author(s):  
J.N. Chapman ◽  
P.E. Batson ◽  
E.M. Waddell ◽  
R.P. Ferrier

By far the most commonly used mode of Lorentz microscopy in the examination of ferromagnetic thin films is the Fresnel or defocus mode. Use of this mode in the conventional transmission electron microscope (CTEM) is straightforward and immediately reveals the existence of all domain walls present. However, if such quantitative information as the domain wall profile is required, the technique suffers from several disadvantages. These include the inability to directly observe fine image detail on the viewing screen because of the stringent illumination coherence requirements, the difficulty of accurately translating part of a photographic plate into quantitative electron intensity data, and, perhaps most severe, the difficulty of interpreting this data. One solution to the first-named problem is to use a CTEM equipped with a field emission gun (FEG) (Inoue, Harada and Yamamoto 1977) whilst a second is to use the equivalent mode of image formation in a scanning transmission electron microscope (STEM) (Chapman, Batson, Waddell, Ferrier and Craven 1977), a technique which largely overcomes the second-named problem as well.


Author(s):  
Yalcin Belli

Fe-Cr-Co alloys have great technological potential to replace Alnico alloys as hard magnets. The relationship between the microstructures and the magnetic properties has been recently established for some of these alloys. The magnetic hardening has been attributed to the decomposition of the high temperature stable phase (α) into an elongated Fe-rich ferromagnetic phase (α1) and a weakly magnetic or non-magnetic Cr-rich phase (α2). The relationships between magnetic domains and domain walls and these different phases are yet to be understood. The TEM has been used to ascertain the mechanism of magnetic hardening for the first time in these alloys. The present paper describes the magnetic domain structure and the magnetization reversal processes in some of these multiphase materials. Microstructures to change properties resulting from, (i) isothermal aging, (ii) thermomagnetic treatment (TMT) and (iii) TMT + stepaging have been chosen for this investigation. The Jem-7A and Philips EM-301 transmission electron microscopes operating at 100 kV have been used for the Lorentz microscopy study of the magnetic domains and their interactions with the finely dispersed precipitate phases.


Author(s):  
Sonoko Tsukahara ◽  
Tadami Taoka ◽  
Hisao Nishizawa

The high voltage Lorentz microscopy was successfully used to observe changes with temperature; of domain structures and metallurgical structures in an iron film set on the hot stage combined with a goniometer. The microscope used was the JEM-1000 EM which was operated with the objective lens current cut off to eliminate the magnetic field in the specimen position. Single crystal films with an (001) plane were prepared by the epitaxial growth of evaporated iron on a cleaved (001) plane of a rocksalt substrate. They had a uniform thickness from 1000 to 7000 Å.The figure shows the temperature dependence of magnetic domain structure with its corresponding deflection pattern and metallurgical structure observed in a 4500 Å iron film. In general, with increase of temperature, the straight domain walls decrease in their width (at 400°C), curve in an iregular shape (600°C) and then vanish (790°C). The ripple structures with cross-tie walls are observed below the Curie temperature.


Author(s):  
Xiao Zhang

Electron holography has recently been available to modern electron microscopy labs with the development of field emission electron microscopes. The unique advantage of recording both amplitude and phase of the object wave makes electron holography a effective tool to study electron optical phase objects. The visibility of the phase shifts of the object wave makes it possible to directly image the distributions of an electric or a magnetic field at high resolution. This work presents preliminary results of first high resolution imaging of ferroelectric domain walls by electron holography in BaTiO3 and quantitative measurements of electrostatic field distribution across domain walls.


Author(s):  
Wenwu Cao

Domain structures play a key role in determining the physical properties of ferroelectric materials. The formation of these ferroelectric domains and domain walls are determined by the intrinsic nonlinearity and the nonlocal coupling of the polarization. Analogous to soliton excitations, domain walls can have high mobility when the domain wall energy is high. The domain wall can be describes by a continuum theory owning to the long range nature of the dipole-dipole interactions in ferroelectrics. The simplest form for the Landau energy is the so called ϕ model which can be used to describe a second order phase transition from a cubic prototype,where Pi (i =1, 2, 3) are the components of polarization vector, α's are the linear and nonlinear dielectric constants. In order to take into account the nonlocal coupling, a gradient energy should be included, for cubic symmetry the gradient energy is given by,


Sign in / Sign up

Export Citation Format

Share Document