Imaging of ferroelectric domain walls by electron holography

Author(s):  
Xiao Zhang

Electron holography has recently been available to modern electron microscopy labs with the development of field emission electron microscopes. The unique advantage of recording both amplitude and phase of the object wave makes electron holography a effective tool to study electron optical phase objects. The visibility of the phase shifts of the object wave makes it possible to directly image the distributions of an electric or a magnetic field at high resolution. This work presents preliminary results of first high resolution imaging of ferroelectric domain walls by electron holography in BaTiO3 and quantitative measurements of electrostatic field distribution across domain walls.

Microscopy ◽  
2020 ◽  
Author(s):  
Takeshi Kawasaki ◽  
Yoshio Takahashi ◽  
Toshiaki Tanigaki

Abstract Electron holography was invented for correcting aberrations of the lenses of electron microscopes. It was used to observe the atomic arrangements in crystals after decades of research. Then it was combined with a hardware aberration corrector to enable high-resolution and high-precision analysis. Its applications were further extended to magnetic observations with sub-nanometer resolution. High-resolution electron holography has become a powerful technique for observing electromagnetic distributions in functional materials.


2010 ◽  
Vol 6 (S274) ◽  
pp. 310-313
Author(s):  
Francesca Zuccarello ◽  

AbstractEST European Solar Telescope is a pan-european project, presently in its Conceptual Design Study financed by the European Commission in the framework of FP7, involving 29 partners, from 14 different countries. The EST project is aimed at the realization of a 4-m class telescope, characterized by an optical design and a set of instruments optimized for extremely high resolution imaging and spectropolarimetric observations from near UV to NIR. EST will be four times larger than any existing high resolution solar telescope and it is designated with the highest priority among the ground-based, medium term (2016-2020) new projects in the ASTRONET Roadmap (Panel C). The EST instruments will measure fundamental astrophysical processes at their intrinsic scales in the Sun's atmosphere to establish the mechanism of magnetic field generation and removal, and of energy transfer from the surface to the upper solar atmosphere and eventually to the whole heliosphere. The conceptual Design Study started on February 2008 and will finish during 2011. EST will be operational at the same time as major ESA and NASA space missions aimed at studying solar activity.


1993 ◽  
Vol 10 (3) ◽  
pp. 233-235 ◽  
Author(s):  
Jennifer Nicholls ◽  
A.D. Gray

AbstractHigh resolution imaging at radio frequencies has revealed several long, filamentary, non-thermal sources in the Galactic Centre region. One of these, known as the Snake, is unique in that it lies outside the Galactic Centre Lobe, and has two kinks along its length, one of which appears to be associated with a small, resolved source. For this work the Snake is assumed to be embedded in a region where both the magnetic field and the particle energy spectrum are uniform. The Snake is then modelled as an enhancement over the background of the particle energy spectrum. Some preliminary results from this model are presented here.


2004 ◽  
Vol 352 (4) ◽  
pp. 1347-1364 ◽  
Author(s):  
P. W. Lucas ◽  
Misato Fukagawa ◽  
Motohide Tamura ◽  
A. F. Beckford ◽  
Yoichi Itoh ◽  
...  

2020 ◽  
Vol 183 ◽  
pp. 104578 ◽  
Author(s):  
P.F. Roche ◽  
E. Lopez-Rodriguez ◽  
C.M. Telesco ◽  
R. Schödel ◽  
C. Packham

2000 ◽  
Vol 6 (S2) ◽  
pp. 1140-1141
Author(s):  
T. Kawasaki ◽  
T. Yoshida ◽  
M. Gorai ◽  
T. Akashi ◽  
I. Matsui ◽  
...  

The development of increasingly coherent and penetrating electron beams in electron microscopy will hasten progress in such fields as high resolution imaging, electron holography, and material structure investigation. Now that we have completed the development of the 1MV-FE- TEM (H-1000FT), we report its performance from the viewpoint of coherent illumination.We observed thin films of gold in testing the high-resolution performance of H-1000FT.Crystal lattice fringes are formed from the interference between Bragg diffracted electron waves. In TEM observation of the films, the visibility of the fringes depends on the coherence of the electron wave and the overall stability of the microscope. Here, we calculated chromatic aberration-limited resolution d, given by ∼-(Δ ƛ)1/2, to be ∼ 0.6 Å (Δ:focus spread). We then slightly tilted the illumination to partially escape from the chromatic effect and to enable us to a shorter spacing lattice image. Figure 1 shows a lattice fringe image we obtained for a Au thin film, in which lattice fringes of 0.498 Å are clearly visible.


Author(s):  
J.M. Cowley

By extrapolation of past experience, it would seem that the future of ultra-high resolution electron microscopy rests with the advances of electron optical engineering that are improving the instrumental stability of high voltage microscopes to achieve the theoretical resolutions of 1Å or better at 1MeV or higher energies. While these high voltage instruments will undoubtedly produce valuable results on chosen specimens, their general applicability has been questioned on the basis of the excessive radiation damage effects which may significantly modify the detailed structures of crystal defects within even the most radiation resistant materials in a period of a few seconds. Other considerations such as those of cost and convenience of use add to the inducement to consider seriously the possibilities for alternative approaches to the achievement of comparable resolutions.


Author(s):  
Max T. Otten ◽  
Wim M.J. Coene

High-resolution imaging with a LaB6 instrument is limited by the spatial and temporal coherence, with little contrast remaining beyond the point resolution. A Field Emission Gun (FEG) reduces the incidence angle by a factor 5 to 10 and the energy spread by 2 to 3. Since the incidence angle is the dominant limitation for LaB6 the FEG provides a major improvement in contrast transfer, reducing the information limit to roughly one half of the point resolution. The strong improvement, predicted from high-resolution theory, can be seen readily in diffractograms (Fig. 1) and high-resolution images (Fig. 2). Even if the information in the image is limited deliberately to the point resolution by using an objective aperture, the improved contrast transfer close to the point resolution (Fig. 1) is already worthwhile.


Author(s):  
George C. Ruben

Single molecule resolution in electron beam sensitive, uncoated, noncrystalline materials has been impossible except in thin Pt-C replicas ≤ 150Å) which are resistant to the electron beam destruction. Previously the granularity of metal film replicas limited their resolution to ≥ 20Å. This paper demonstrates that Pt-C film granularity and resolution are a function of the method of replication and other controllable factors. Low angle 20° rotary , 45° unidirectional and vertical 9.7±1 Å Pt-C films deposited on mica under the same conditions were compared in Fig. 1. Vertical replication had a 5A granularity (Fig. 1c), the highest resolution (table), and coated the whole surface. 45° replication had a 9Å granulartiy (Fig. 1b), a slightly poorer resolution (table) and did not coat the whole surface. 20° rotary replication was unsuitable for high resolution imaging with 20-25Å granularity (Fig. 1a) and resolution 2-3 times poorer (table). Resolution is defined here as the greatest distance for which the metal coat on two opposing faces just grow together, that is, two times the apparent film thickness on a single vertical surface.


Sign in / Sign up

Export Citation Format

Share Document