Analysis of Electrostatic Interactions of Amino Acid Residues by the Example of Formation of a Nap1–Nap1 Dimer

2020 ◽  
Vol 65 (3) ◽  
pp. 333-339
Author(s):  
T. V. Koshlan ◽  
K. G. Kulikov
2019 ◽  
Vol 24 (9) ◽  
pp. 928-938 ◽  
Author(s):  
Luca Palazzolo ◽  
Chiara Paravicini ◽  
Tommaso Laurenzi ◽  
Sara Adobati ◽  
Simona Saporiti ◽  
...  

SLC6A14 (ATB0,+) is a sodium- and chloride-dependent neutral and dibasic amino acid transporter that regulates the distribution of amino acids across cell membranes. The transporter is overexpressed in many human cancers characterized by an increased demand for amino acids; as such, it was recently acknowledged as a novel target for cancer therapy. The knowledge on the molecular mechanism of SLC6A14 transport is still limited, but some elegant studies on related transporters report the involvement of the 12 transmembrane α-helices in the transport mechanism, and describe structural rearrangements mediated by electrostatic interactions with some pivotal gating residues. In the present work, we constructed a SLC6A14 model in outward-facing conformation via homology modeling and used molecular dynamics simulations to predict amino acid residues critical for substrate recognition and translocation. We docked the proteinogenic amino acids and other known substrates in the SLC6A14 binding site to study both gating regions and the exposed residues involved in transport. Interestingly, some of these residues correspond to those previously identified in other LeuT-fold transporters; however, we could also identify a novel relevant residue with such function. For the first time, by combined approaches of molecular docking and molecular dynamics simulations, we highlight the potential role of these residues in neutral amino acid transport. This novel information unravels new aspects of the human SLC6A14 structure–function relationship and may have important outcomes for cancer treatment through the design of novel inhibitors of SLC6A14-mediated transport.


Botany ◽  
2009 ◽  
Vol 87 (3) ◽  
pp. 339-347 ◽  
Author(s):  
Mohsen Hanana ◽  
Olivier Cagnac ◽  
Ahmed Mliki ◽  
Eduardo Blumwald

After identifying and isolating a grapevine ( Vitis vinifera L.) NHX vacuolar antiporter and before initializing functional genomic studies, we juged necessary to acquire a minimum of knowledge about the VvNHX1 protein. Thus, we realized a bioinformatic analysis to determine its basic characteristics and to get structural informations that could guide us through the functional characterization. We have determined important physico-chemical parameters (molecular mass, isoelectric point, hydrophobic regions, etc.) and obtained interesting structural data (primary, secondary, and tertiary structures; conserved domains and interaction motives; etc.). The VvNHX1 gene, which encodes this 541 amino-acid protein with a predicted molecular mass of 60 kDa, is made of 14 exons and measures 6.5 kb. The amino-acidic composition of this protein is very important, in particular, for the establishment of the α-helix structure, which represents more than 50% of the protein, but also for charge distribution, which generates critical electrostatic interactions for the ionic flux. The secondary structure of VvNHX1 contains multiple transmembrane α-helix segments that are made of hydrophobic amino-acid residues, thus facilitating its insertion in the membrane. Globally, VvNHX1 has one hydrophobic N-terminal region, made of 10 transmembrane segments with 440 amino-acid residues, and one hydrophilic C-terminal region, made of 100 residues. The region located between the fourth and fifth transmembrane segments represents, with its structure mainly helicoidal and the presence of a favourable electrostatic environment, the pore where cation flux is performed across the membrane. VvNHX1 contains various interaction domains as well as several putative posttranslational modification sites, mainly at the C-terminus but also at the N-terminus, that play an important part in regulating protein activities, influence protein structural stability, or interact with other proteins or signalling molecules.


2017 ◽  
Vol 292 (45) ◽  
pp. 18608-18617 ◽  
Author(s):  
Gianluca Interlandi ◽  
Olga Yakovenko ◽  
An-Yue Tu ◽  
Jeff Harris ◽  
Jennie Le ◽  
...  

2018 ◽  
Vol 20 (47) ◽  
pp. 29811-29816 ◽  
Author(s):  
Avia Leader ◽  
Daniel Mandler ◽  
Meital Reches

Understanding the nature of interactions between inorganic surfaces and biomolecules, such as amino acids and peptides, can enhance the development of new materials.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuta Nakajima ◽  
Laura Pedraza-González ◽  
Leonardo Barneschi ◽  
Keiichi Inoue ◽  
Massimo Olivucci ◽  
...  

AbstractColor tuning in animal and microbial rhodopsins has attracted the interest of many researchers, as the color of their common retinal chromophores is modulated by the amino acid residues forming the chromophore cavity. Critical cavity amino acid residues are often called “color switches”, as the rhodopsin color is effectively tuned through their substitution. Well-known color switches are the L/Q and A/TS switches located in the C and G helices of the microbial rhodopsin structure respectively. Recently, we reported on a third G/P switch located in the F helix of the light-driven sodium pumps of KR2 and JsNaR causing substantial spectral red-shifts in the latter with respect to the former. In order to investigate the molecular-level mechanism driving such switching function, here we present an exhaustive mutation, spectroscopic and computational investigation of the P219X mutant set of KR2. To do so, we study the changes in the absorption band of the 19 possible mutants and construct, semi-automatically, the corresponding hybrid quantum mechanics/molecular mechanics models. We found that the P219X feature a red-shifted light absorption with the only exception of P219R. The analysis of the corresponding models indicate that the G/P switch induces red-shifting variations via electrostatic interactions, while replacement-induced chromophore geometrical (steric) distortions play a minor role. However, the same analysis indicates that the P219R blue-shifted variant has a more complex origin involving both electrostatic and steric changes accompanied by protonation state and hydrogen bond networks modifications. These results make it difficult to extract simple rules or formulate theories for predicting how a switch operates without considering the atomistic details and environmental consequences of the side chain replacement.


Biochemistry ◽  
2001 ◽  
Vol 40 (50) ◽  
pp. 15403-15407 ◽  
Author(s):  
J. C. Williams ◽  
A. L. M. Haffa ◽  
J. L. McCulley ◽  
N. W. Woodbury ◽  
J. P. Allen

1987 ◽  
Vol 57 (01) ◽  
pp. 017-019 ◽  
Author(s):  
Magda M W Ulrich ◽  
Berry A M Soute ◽  
L Johan M van Haarlem ◽  
Cees Vermeer

SummaryDecarboxylated osteocalcins were prepared and purified from bovine, chicken, human and monkey bones and assayed for their ability to serve as a substrate for vitamin K-dependent carboxylase from bovine liver. Substantial differences were observed, especially between bovine and monkey d-osteocalcin. Since these substrates differ only in their amino acid residues 3 and 4, it seems that these residues play a role in the recognition of a substrate by hepatic carboxylase.


Sign in / Sign up

Export Citation Format

Share Document