Spontaneous Magnetization Loss Dynamics of (Pr, Dy)–(Fe, Co)–B Magnets

2020 ◽  
Vol 65 (3) ◽  
pp. 377-381
Author(s):  
I. I. Rezchikova ◽  
N. S. Moiseeva ◽  
D. V. Korolev ◽  
R. B. Morgunov ◽  
V. P. Piskorskii
Author(s):  
T. Kimura

This chapter discusses the spin-transfer effect, which is described as the transfer of the spin angular momentum between the conduction electrons and the magnetization of the ferromagnet that occurs due to the conservation of the spin angular momentum. L. Berger, who introduced the concept in 1984, considered the exchange interaction between the conduction electron and the localized magnetic moment, and predicted that a magnetic domain wall can be moved by flowing the spin current. The spin-transfer effect was brought into the limelight by the progress in microfabrication techniques and the discovery of the giant magnetoresistance effect in magnetic multilayers. Berger, at the same time, separately studied the spin-transfer torque in a system similar to Slonczewski’s magnetic multilayered system and predicted spontaneous magnetization precession.


Author(s):  
Wenrong Li ◽  
Jie Sheng ◽  
Jinxing Zheng ◽  
Yue Wu ◽  
Chunjiang Guo ◽  
...  

Author(s):  
Mengyuan Tian ◽  
Jiabin Yang ◽  
Boyang Shen ◽  
Yavuz Ozturk ◽  
Jun Ma ◽  
...  
Keyword(s):  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mohammad Yazdani-Asrami ◽  
Wenjuan Song ◽  
Min Zhang ◽  
Weijia Yuan ◽  
Xiaoze Pei

1980 ◽  
Vol 22 (9) ◽  
pp. 4370-4378 ◽  
Author(s):  
J. A. Griffin ◽  
M. Huster ◽  
Robert J. Folweiler

1953 ◽  
Vol 49 (1) ◽  
pp. 115-129 ◽  
Author(s):  
A. B. Lidiard

ABSTRACTThe theory of collective electron ferromagnetism given by Stoner applies to a system of electrons in a single energy band; for iron, cobalt and nickel this is identified with the band of states derived from atomic 3d functions. To bring in the generally assumed overlapping of the 3d band by the wide 4s band in these metals, the theory has been extended to take account of the transfer of electrons from 3d to 4s states with change of temperature. A previous calculation of this transfer effect must be regarded as inadequate, for the part played by the exchange energy in determining the distribution of electrons between the two sets of states was omitted. The general equations are derived in § 2 and used as a basis for discussion of the properties of nickel-copper alloys at absolute zero in § 3. In §§4 and 5 numerical results are presented which show the effect of the overlapping 4s band on the magnetic properties of a system such as nickel both above and below its Curie point. Comparison with the measured paramagnetic susceptibility of pure nickel above the Curie point strongly suggests that for this metal the overlapping 4s band has only a minor influence, although in principle the effect could be very large (cf. Fig. 4). This result is not unambiguous, however, because values thus inferred for the two unknown parameters lead to inaccurate predictions below the Curie point. First, the predicted values for the spontaneous magnetization are too small. Secondly, the theory demands that the nickel-copper alloys should only be ferromagnetic below a copper content of about 20 %, whereas experimentally the limit is known to be about 60 %. In conclusion, it is suggested that the implicit assumption of Stoner's theory that the exchange integrals between all pairs of 3d states are equal to one another is a more serious restriction on the theory than the consideration of only a single energy band.


Science ◽  
2009 ◽  
Vol 325 (5943) ◽  
pp. 973-976 ◽  
Author(s):  
R. Beaulac ◽  
L. Schneider ◽  
P. I. Archer ◽  
G. Bacher ◽  
D. R. Gamelin

2007 ◽  
Vol 463-465 ◽  
pp. 766-769 ◽  
Author(s):  
O. Tsukamoto ◽  
M. Liu ◽  
S. Odaka ◽  
D. Miyagi ◽  
K. Ohmatsu

Sign in / Sign up

Export Citation Format

Share Document