A nonstationary model of the thermal regime of axial zones of mid-ocean ridges: Formation of crustal and mantle magma chambers

2007 ◽  
Vol 43 (2) ◽  
pp. 130-147 ◽  
Author(s):  
Yu. I. Galushkin ◽  
E. P. Dubinin ◽  
A. A. Sveshnikov
1983 ◽  
Vol 47 (344) ◽  
pp. 267-280 ◽  
Author(s):  
H. R. Rollinson

AbstractThe Archaean (c. 2800 Ma) ultramafic rocks in eastern Sierra Leone cut basalt lavas and are mostly olivine-rich cumulates either iron-rich (Fo85–86) and derived from a basaltic or picritic parent, or more magnesian (Fo92–93) derived from an ultramafic melt with c. 18–25 wt. % MgO. In central Sierra Leone the ultramafic rocks are lavas predating tholeiitic basalts.The basalts show a wide variation in Zr/Y, suggesting that garnet was present in the source region of some of these rocks but not others. This implies that melting took place at different depths in the mantle. The REE evidence for basaltic rocks in the upper part of the Nimini belt succession suggests that they were derived from a mantle source region which had already suffered melt extraction. Ti/Zr ratios in the basaltic rocks are also variable and individual belts define different trends on a Ti vs. Zr plot implying that the basaltic rocks evolved in geographically distinct magma chambers. It is likely that the basaltic rocks evolved from a parental liquid with Ti/Zr = 90 via shallow level crystal fractionation. The source region for these rocks therefore had a lower than chondritic Ti/Zr.There are two possible models for the basaltic and ultramafic magmas in the Sierra Leone greenstone belts. First that the ultramafic and basaltic liquids were derived from mantle diapirs of differing size, but originating in the same region of the mantle. Ultramafic liquids were produced in small diapirs, which store large melt fractions, and basaltic liquids in larger diapirs which segregate larger melt fractions. A second model is based upon the double diffusion process suggested for magma chambers at mid-ocean ridges and involves a transient magma chamber from which basalts, derived from parental ultramafic liquids, are erupted, with ultramafic liquids rising directly to the surface when the magma chamber is frozen. The available data does not discriminate between these two models.


Author(s):  
Roy Livermore

According to first-generation plate tectonics, sea-floor spreading was nice and simple. Plates were pulled apart at mid-ocean ridges, and weak mantle rocks rose to fill the gap and began to melt. The resulting basaltic magma ascended into the crust, where it ponded to form linear ‘infinite onion’ magma chambers beneath the mid-ocean tennis-ball seam. At frequent intervals, vertical sheets of magma rose from these chambers to the surface, where they erupted to form new ocean floor or solidified to form dykes, in the process acquiring a magnetization corresponding to the geomagnetic field at the time. Mid-ocean ridge axes were defined by rifted valleys and divided into segments by transform faults with offsets of tens to hundreds of kilometres, resulting in the staircase pattern seen on maps of the ocean floor. All mid-ocean ridges were thus essentially identical. Such a neat and elegant theory was bound to be undermined as new data were acquired in the oceans.


Author(s):  
Nataliya Belova ◽  
Nataliya Belova ◽  
Alisa Baranskaya ◽  
Alisa Baranskaya ◽  
Osip Kokin ◽  
...  

The coasts of Baydaratskaya Bay are composed by loose frozen sediments. At Yamal Peninsula accumulative coasts are predominant at the site where pipeline crosses the coast, while thermoabrasional coast are prevail at the Ural coast crossing site. Coastal dynamics monitoring on both sites is conducted using field and remote methods starting from the end of 1980s. As a result of construction in the coastal zone the relief morphology was disturbed, both lithodynamics and thermal regime of the permafrost within the areas of several km around the sites where gas pipeline crosses coastline was changed. At Yamal coast massive removal of deposits from the beach and tideflat took place. The morphology of barrier beach, which previously was a natural wave energy dissipater, was disturbed. This promoted inland penetration of storm surges and permafrost degradation under the barrier beach. At Ural coast the topsoil was disrupted by construction trucks, which affected thermal regime of the upper part of permafrost and lead to active layer deepening. Thermoerosion and thermoabrasion processes have activated on coasts, especially at areas with icy sediments, ice wedges and massive ice beds. Construction of cofferdams resulted in overlapping of sediments transit on both coasts and caused sediment deficit on nearby nearshore zone areas. The result of technogenic disturbances was widespread coastal erosion activation, which catastrophic scale is facilitated by climate warming in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document