Production of a Concentrate of Rare-Earth Metals from Wet-Process Phosphoric Acid

2018 ◽  
Vol 91 (3) ◽  
pp. 379-383 ◽  
Author(s):  
M. V. Papkova ◽  
T. V. Kon’kova ◽  
D. A. Samieva ◽  
S. A. Vasilenko
Author(s):  
Baltabekova Zhazira ◽  
Kenzhaliyev Bagdaulet ◽  
Lokhova Nina ◽  
Kassymzhanov Kaisar

When apatites and phosphorites are processed, up to 30% of rare earth metals are converted into wet-process phosphoric acid. Wet-process phosphoric acid from the phosphorite treatment process differs from apatite one by impurity composition, i.e. the iron content is by 3.5 times, and calcium is by 5.0 times more. The complex composition of the wet-process phosphoric acid from the phosphorite treatment process requires additional researches to select optimal ion exchangers and technological parameters of sorption. Various aspects of sorption have been studied to select the optimal ion exchangers and technological parameters, and technological modes for desorption of rare earth metals from a cation exchanger to obtain a concentrate of rare earth metals have been completed. The method enables to extract rare earth metals without changing the composition of commercial wet-process phosphoric acid directly in the production process of the enterprises engaged in the phosphorite treatment process.


2018 ◽  
pp. 54-57
Author(s):  
T. V. Konkova ◽  
◽  
Ch. N. Kuin ◽  
M. V. Papkova ◽  
◽  
...  

2021 ◽  
Vol 266 ◽  
pp. 02002
Author(s):  
E.S. Lukyantseva ◽  
V.V. Sergeev

Currently, most high-technology productions are impossible without rare-earth elements (REE). The heavy rare-earth elements are of great interest as they have the highest market value and are in demand in the vast majority of knowledge-intensive industries. The main recourse of REE in Russia is apatite ore which is used in the production of fertilizers. As a result of its leaching, about 15-20% of REE goes to wet-process phosphoric acid. To enhance the depth of apatite processing, it is necessary to develop a technology which will allow obtaining rare-earth elements as by-products. The method of extraction and concentration of REE discussed in this paper was conducted by using the extractant based on di-(2-ethylhexyl) phosphoric acid (D2EHPA). The mechanism of extraction was studied, as well as the impact of the extractant concentration, phase ratio and the number of stages on the extraction process.


2016 ◽  
pp. 57-62 ◽  
Author(s):  
M. V. Papkova ◽  
◽  
A. I. Mikhaylichenko ◽  
T. V. Konkova ◽  
O. Yu. Saykina ◽  
...  

2015 ◽  
Vol 88 (1) ◽  
pp. 1-12 ◽  
Author(s):  
E. P. Lokshin ◽  
O. A. Tareeva ◽  
I. R. Elizarova ◽  
V. T. Kalinnikov

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 991
Author(s):  
Olga Cheremisina ◽  
Maria Ponomareva ◽  
Vasiliy Sergeev ◽  
Yulia Mashukova ◽  
Daniil Balandinsky

Nowadays, solving the problem of rational, integrated use of the mined raw materials, the transition to waste-free technologies for its processing is a crucial task. The sulfuric acid technology used for the processing of apatite concentrates on a large industrial scale does not provide the associated extraction of accompanying valuable components—rare earth metals (REM). During apatite concentrate processing, rare-earth metals are affected by the technology-related dispersion, being distributed between the insoluble leaching residue and phosphoric acid solution sent to the production of fertilizers. The necessity of a cost-effective method development for the extraction of rare earth metals is quite obvious already in connection with the indicated significance of the problem. Phosphoric acid solutions that simulate the composition of industrial phosphoric acid solutions of the following composition 4.5 mol/L H3PO4, 0.19 mol/L H2SO4 and 0.10–0.12% REM were selected as the object of research. The extraction of rare earth metals was carried out using polymers containing a fixed layer of an extractant—di-2-ethylhexylphosphoric acid (D2EHPA). Fixed layer was obtained by impregnation-saturation (solvent-impregnated resin (SIR)) or by the introduction of an extractant at the stage of polymer matrix synthesis (extractant-resin extraction (ERE)). The work determined the thermodynamic and technological characteristics of the solid-phase extraction of rare earth elements from phosphoric acid solutions with polymers impregnated with D2EHPA and containing a rigidly fixed extractant in a styrene-divinylbenzene resin matrix. The possibility of effective multiple use of polymeric resins containing D2EHPA, regenerated with a solution of 1 mol/L sodium citrate, was revealed.


Author(s):  
Aleksandr V. Firsov ◽  
Aleksandr V. Artamonov ◽  
Dar'ya N. Smirnova ◽  
Aleksandr P. Ilyin ◽  
Segreiy P. Kochetkov

The kinetic and dynamic characteristics of the sorption of rare earths metals (REE) from no evaporated extration phosphoric acid (EPA) of dihydrate production on macroporous strongly acidic cation Rurolite C150 were investigated. The process of sorption of rare earth metals was established to take place in the external diffusion region.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 416 ◽  
Author(s):  
Haijun Liang ◽  
Patrick Zhang ◽  
Zhen Jin ◽  
David DePaoli

Phosphorite, or phosphate rock, is the raw material of phosphoric acid production. It has also been regarded as the most important secondary rare earth element (REE) resource due to low contents of rare earth elements contained in the ore. In Florida, there is about 19 Mt of phosphate rock mined annually. After beneficiation, the phosphate rock concentrate is utilized to produce phosphoric acid via a wet-process in which sulfuric acid is used to digest phosphate. During these processes, REEs and some phosphorus get lost in the byproducts including phosphatic clay, flotation tailings, phosphogypsum (PG), and phosphoric sludge. Recovering REEs and phosphorus from these wastes is beneficial to maximize the utilization of these valuable resources. This study focused on the effects of wet-process operating conditions on REE and phosphorus leaching from a kind of flotation tailing of Florida phosphate rock. The tailings were first beneficiated with a shaking table, and then a series of leaching tests were conducted on the shaking table concentrate. The results indicated that REEs had similar trends of leaching efficiency to those of phosphorus. Under the conditions of 16% phosphoric acid concentration in the initial pulp, a temperature of 75 °C, a stoichiometric ratio of sulfuric acid (H2SO4) to calcium oxide (CaO) of 1.1, and a weight ratio of liquid to solid of 3.5, REE and phosphorus leaching efficiencies reached relatively high values of approximately 61% and 91%, respectively. Analyses indicated that the phosphate ions (PO43−) in the leaching solution tended to combine with REE ions to form REE phosphates which precipitated into PG, but the other large amount of anions such as sulfate ions (SO42−) and fluoride ions (F−) took effect of steric hindrance to prevent PO43− from combining with REE cations. These two opposite effects determined the REE distribution between the leaching solution and PG.


Sign in / Sign up

Export Citation Format

Share Document