scholarly journals Sorption Extraction of Rare Earth Metals from Wet-Process Phosphoric Acid

Author(s):  
Baltabekova Zhazira ◽  
Kenzhaliyev Bagdaulet ◽  
Lokhova Nina ◽  
Kassymzhanov Kaisar

When apatites and phosphorites are processed, up to 30% of rare earth metals are converted into wet-process phosphoric acid. Wet-process phosphoric acid from the phosphorite treatment process differs from apatite one by impurity composition, i.e. the iron content is by 3.5 times, and calcium is by 5.0 times more. The complex composition of the wet-process phosphoric acid from the phosphorite treatment process requires additional researches to select optimal ion exchangers and technological parameters of sorption. Various aspects of sorption have been studied to select the optimal ion exchangers and technological parameters, and technological modes for desorption of rare earth metals from a cation exchanger to obtain a concentrate of rare earth metals have been completed. The method enables to extract rare earth metals without changing the composition of commercial wet-process phosphoric acid directly in the production process of the enterprises engaged in the phosphorite treatment process.

2018 ◽  
Vol 91 (3) ◽  
pp. 379-383 ◽  
Author(s):  
M. V. Papkova ◽  
T. V. Kon’kova ◽  
D. A. Samieva ◽  
S. A. Vasilenko

2018 ◽  
pp. 54-57
Author(s):  
T. V. Konkova ◽  
◽  
Ch. N. Kuin ◽  
M. V. Papkova ◽  
◽  
...  

2021 ◽  
Vol 266 ◽  
pp. 02002
Author(s):  
E.S. Lukyantseva ◽  
V.V. Sergeev

Currently, most high-technology productions are impossible without rare-earth elements (REE). The heavy rare-earth elements are of great interest as they have the highest market value and are in demand in the vast majority of knowledge-intensive industries. The main recourse of REE in Russia is apatite ore which is used in the production of fertilizers. As a result of its leaching, about 15-20% of REE goes to wet-process phosphoric acid. To enhance the depth of apatite processing, it is necessary to develop a technology which will allow obtaining rare-earth elements as by-products. The method of extraction and concentration of REE discussed in this paper was conducted by using the extractant based on di-(2-ethylhexyl) phosphoric acid (D2EHPA). The mechanism of extraction was studied, as well as the impact of the extractant concentration, phase ratio and the number of stages on the extraction process.


2016 ◽  
pp. 57-62 ◽  
Author(s):  
M. V. Papkova ◽  
◽  
A. I. Mikhaylichenko ◽  
T. V. Konkova ◽  
O. Yu. Saykina ◽  
...  

2015 ◽  
Vol 88 (1) ◽  
pp. 1-12 ◽  
Author(s):  
E. P. Lokshin ◽  
O. A. Tareeva ◽  
I. R. Elizarova ◽  
V. T. Kalinnikov

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 991
Author(s):  
Olga Cheremisina ◽  
Maria Ponomareva ◽  
Vasiliy Sergeev ◽  
Yulia Mashukova ◽  
Daniil Balandinsky

Nowadays, solving the problem of rational, integrated use of the mined raw materials, the transition to waste-free technologies for its processing is a crucial task. The sulfuric acid technology used for the processing of apatite concentrates on a large industrial scale does not provide the associated extraction of accompanying valuable components—rare earth metals (REM). During apatite concentrate processing, rare-earth metals are affected by the technology-related dispersion, being distributed between the insoluble leaching residue and phosphoric acid solution sent to the production of fertilizers. The necessity of a cost-effective method development for the extraction of rare earth metals is quite obvious already in connection with the indicated significance of the problem. Phosphoric acid solutions that simulate the composition of industrial phosphoric acid solutions of the following composition 4.5 mol/L H3PO4, 0.19 mol/L H2SO4 and 0.10–0.12% REM were selected as the object of research. The extraction of rare earth metals was carried out using polymers containing a fixed layer of an extractant—di-2-ethylhexylphosphoric acid (D2EHPA). Fixed layer was obtained by impregnation-saturation (solvent-impregnated resin (SIR)) or by the introduction of an extractant at the stage of polymer matrix synthesis (extractant-resin extraction (ERE)). The work determined the thermodynamic and technological characteristics of the solid-phase extraction of rare earth elements from phosphoric acid solutions with polymers impregnated with D2EHPA and containing a rigidly fixed extractant in a styrene-divinylbenzene resin matrix. The possibility of effective multiple use of polymeric resins containing D2EHPA, regenerated with a solution of 1 mol/L sodium citrate, was revealed.


Author(s):  
Aleksandr V. Firsov ◽  
Aleksandr V. Artamonov ◽  
Dar'ya N. Smirnova ◽  
Aleksandr P. Ilyin ◽  
Segreiy P. Kochetkov

The kinetic and dynamic characteristics of the sorption of rare earths metals (REE) from no evaporated extration phosphoric acid (EPA) of dihydrate production on macroporous strongly acidic cation Rurolite C150 were investigated. The process of sorption of rare earth metals was established to take place in the external diffusion region.


Author(s):  
Gulnoza Kodirova ◽  
Israiljon Shamshidinov ◽  
Boxodir Sultonov ◽  
Rikxsitilla Najmiddinov ◽  
Bakhodir Mamurov

Fluoride compounds have the most harmful effects on the environment. The main source of fluoride in the soil is phosphorus-containing fertilizers. Purification of wet-process phosphoric acid (WPPA) from fluorine will significantly reduce its content in phosphorous-containing fertilizers and improve the quality of the resulting products. The aim of the study is to reduce the content of fluorine and sulfates in the wet-process phosphoric acid by introducing calcium carbonate, dolomite or phosphorite into the finished extraction pulp before filtration and obtaining high-quality calcium and magnesium-containing phosphate fertilizers based on it. Phosphates were determined by differential photometric, fluorine – ionometric, calcium, magnesium, aluminum, and iron-complexometric, and sulfates-by weight methods. For the first time, scientifically-based data were obtained on the simultaneous reduction of the content of fluorine and sulfates in WPPA from phosphorites of Central Kyzylkum and the production of calcium-magnesium phosphate fertilizers based on it. Optimal technological parameters of the process of simultaneous defluorination and desulfatation of  WPPA from Central Kyzylkum phosphorites with calcium carbonate, dolomite and washed burnt phosphoconcentrate (WСPC) were found by introducing them into the second section of the extractor, into the finished extraction pulp in the amount of 100% for sulfate binding and 100-150% for fluorine binding, as well as obtaining high-quality products based on purified WPPA. The degree of transition of fluorine to the gas phase and phosphogypsum at a rate of 100-150% of calcium oxide for fluorine binding is 86.2-89.4% and its content in the wet-process phosphoric acid decreases from 1.18% to 0.22-0.29%. At the same time, the SO3 content in the acid decreases from 1.21% to 0.24-0.26%. The filtration rate of the sulfate-phosphate pulp varies slightly and is 807.6-812.6 kg/m2·h by dry residue.


Sign in / Sign up

Export Citation Format

Share Document