Polarimetric Studies of Azimuthal Magnetic Inhomogeneities in the Envelopes of Herbig Ae/Be Stars

2021 ◽  
Vol 76 (4) ◽  
pp. 405-414
Author(s):  
N. G. Beskrovnaya ◽  
M. A. Pogodin ◽  
N. R. Ikhsanov
2019 ◽  
Vol 630 ◽  
pp. A90 ◽  
Author(s):  
Bertil Pettersson ◽  
Bo Reipurth

A deep objective-prism survey for Hα emission stars towards the Canis Major star-forming clouds was performed. A total of 398 Hα emitters were detected, 353 of which are new detections. There is a strong concentration of these Hα emitters towards the molecular clouds surrounding the CMa OB1 association, and it is likely that these stars are young stellar objects recently born in the clouds. An additional population of Hα emitters is scattered all across the region, and probably includes unrelated foreground dMe stars and background Be stars. About 90% of the Hα emitters are detected by WISE, of which 75% was detected with usable photometry. When plotted in a WISE colour–colour diagram it appears that the majority are Class II YSOs. Coordinates and finding charts are provided for all the new stars, and coordinates for all the detections. We searched the Gaia-DR2 catalogue and from 334 Hα emission stars with useful parallaxes, we selected a subset of 98 stars that have parallax errors of less than 20% and nominal distances in the interval 1050 to 1350 pc that surrounds a strong peak at 1185 pc in the distance distribution. Similarly, Gaia distances were obtained for 51 OB-stars located towards Canis Major and selected with the same parallax errors as the Hα stars. We find a median distance for the OB stars of 1182 pc, in excellent correspondence with the distance from the Hα stars. Two known runaway stars are confirmed as members of the association. Finally, two new Herbig-Haro objects are identified.


1987 ◽  
Vol 92 ◽  
pp. 3-21
Author(s):  
George W. Collins

AbstractIn this paper I shall examine the use and misuse of some astronomical terminology as it is commonly found in the literature. The incorrect usage of common terms, and sometimes the terms themselves, can lead to confusion by the reader and may well indicate misconceptions by the authors. A basic definition of the Be phenomena is suggested and other stellar characteristics whose interpretation may change when used for non-spherical stars, is discussed. Special attention is paid to a number of terms whose semantic nature is misleading when applied to the phenomena they are intended to represent. The use of model-dependent terms is discussed and some comments are offered which are intended to improve the clarity of communication within the subject.


1976 ◽  
Vol 70 ◽  
pp. 377-382 ◽  
Author(s):  
R. L. Kurucz ◽  
R. E. Schild

A detailed calculation of the radiative acceleration in B-type stars shows it to be a double-peaked function of effective temperature at small optical depths. The two peaks are shown to coincide approximately with peaks in the distribution of mean Hα emission strength as a function of B - V color in Be stars. These facts suggest that radiation may play an important role in the support of the Be star extended atmosphere.


1994 ◽  
Vol 212 (1-2) ◽  
pp. 107-114 ◽  
Author(s):  
C. A. Grady ◽  
M. R. P�rez ◽  
P. S. Th�

2010 ◽  
Vol 6 (S272) ◽  
pp. 398-399 ◽  
Author(s):  
Carol E. Jones ◽  
Christopher Tycner ◽  
Jessie Silaj ◽  
Ashly Smith ◽  
T. A. Aaron Sigut

AbstractHα high resolution spectroscopy combined with detailed numerical models is used to probe the physical conditions, such as density, temperature, and velocity of Be star disks. Models have been constructed for Be stars over a range in spectral types and inclination angles. We find that a variety of line shapes can be obtained by keeping the inclination fixed and changing density alone. This is due to the fact that our models account for disk temperature distributions self-consistently from the requirement of radiative equilibrium. A new analytical tool, called the variability ratio, was developed to identify emission-line stars at particular stages of variability. It is used in this work to quantify changes in the Hα equivalent widths for our observed spectra.


Sign in / Sign up

Export Citation Format

Share Document