An approximate solution of a Fredholm integral equation of the first kind by the residual method

2016 ◽  
Vol 9 (1) ◽  
pp. 74-81 ◽  
Author(s):  
V. P. Tanana ◽  
E. Yu. Vishnyakov ◽  
A. I. Sidikova
2006 ◽  
Vol 6 (3) ◽  
pp. 264-268
Author(s):  
G. Berikelashvili ◽  
G. Karkarashvili

AbstractA method of approximate solution of the linear one-dimensional Fredholm integral equation of the second kind is constructed. With the help of the Steklov averaging operator the integral equation is approximated by a system of linear algebraic equations. On the basis of the approximation used an increased order convergence solution has been obtained.


1969 ◽  
Vol 16 (3) ◽  
pp. 185-194 ◽  
Author(s):  
V. Hutson

Consider the Fredholm equation of the second kindwhereand Jv is the Bessel function of the first kind. Here ka(t) and h(x) are given, the unknown function is f(x), and the solution is required for large values of the real parameter a. Under reasonable conditions the solution of (1.1) is given by its Neumann series (a set of sufficient conditions on ka(t) for the convergence of this series is given in Section 4, Lemma 2). However, in many applications the convergence of the series becomes too slow as a→∞ for any useful results to be obtained from it, and it may even happen that f(x)→∞ as a→∞. It is the aim of the present investigation to consider this case, and to show how under fairly general conditions on ka(t) an approximate solution may be obtained for large a, the approximation being valid in the norm of L2(0, 1). The exact conditions on ka(t) and the main result are given in Section 4. Roughly, it is required that 1 -ka(at) should behave like tp(p>0) as t→0. For example, ka(at) might be exp ⌈-(t/ap)⌉.


2017 ◽  
Vol 65 (2) ◽  
pp. 151-155
Author(s):  
MM Hasan ◽  
MA Matin

In this paper, we apply Homotopy perturbation method (HPM) for obtaining approximate solution of nonlinear Fredholm integral equation of the second kind. Finally, some numerical examples are provided, and the obtained numerical approximations are compared with the corresponding exact solution. Dhaka Univ. J. Sci. 65(2): 151-155, 2017 (July)


2015 ◽  
Vol 23 (4) ◽  
Author(s):  
Edyta Hetmaniok ◽  
Iwona Nowak ◽  
Damian Słota ◽  
Roman Wituła

AbstractIn this paper an application of the homotopy analysis method for some type of nonlinear and linear integral equations of the second kind is presented. A special case of considered equation is the Volterra- Fredholm integral equation. In homotopy analysis method a series is created. It has shown that if the series is convergent, its sum is the solution of the considered equation. It has been also shown that under proper assumptions the considered equation possesses a unique solution and the series obtained in homotopy analysis method is convergent. The error of the approximate solution was estimated. This approximate solution is obtained when we limit to the partial sum of the series.Application of the method is illustrated with examples.


2021 ◽  
Vol 1 (1) ◽  
pp. 29-35
Author(s):  
V. N. Gorev ◽  
A. Yu. Gusev ◽  
V. I. Korniienko

Context. We consider the Kolmogorov-Wiener filter for forecasting of telecommunication traffic in the framework of a continuous fractional Gaussian noise model. Objective. The aim of the work is to obtain the filter weight function as an approximate solution of the corresponding WienerHopf integral equation. Also the aim of the work is to show the convergence of the proposed method of solution of the corresponding equation. Method. The Wiener-Hopf integral equation for the filter weight function is a Fredholm integral equation of the first kind. We use the truncated polynomial expansion method in order to obtain an approximate solution of the corresponding equation. A set of Chebyshev polynomials of the first kind is used. Results. We obtained approximate solutions for the Kolmogorov-Wiener filter weight function for forecasting of continuous fractional Gaussian noise. The solutions are obtained in the approximations of different number of polynomials; the results are obtained up to the nineteen-polynomial approximation. It is shown that the proposed method is convergent for the problem under consideration, i.e. the accuracy of the coincidence of the left-hand and right-hand sides of the integral equation increases with the number of polynomials. Such convergence takes place due to the fact that the correlation function of continuous fractional Gaussian noise, which is the kernel of the corresponding integral equation, is a positively-defined function. Conclusions. The Kolmogorov-Wiener filter weight function for forecasting of continuous fractional Gaussian noise is obtained as an approximate solution of the corresponding Fredholm integral equation of the first kind. The proposed truncated polynomial expansion method is convergent for the problem under consideration. As is known, one of the simplest telecommunication traffic models is the model of continuous fractional Gaussian noise, so the results of the paper may be useful for telecommunication traffic forecast.


Sign in / Sign up

Export Citation Format

Share Document