Studies of Diffraction Methods of Ultrasonic Testing Applied for Revealing Artificial Defects Simulating Fractured Oxide Films in a Friction Stir Weld

2021 ◽  
Vol 12 (4) ◽  
pp. 1047-1052
Author(s):  
N. P. Aleshin ◽  
V. A. Bakshaev ◽  
M. V. Grigor’ev ◽  
N. A. Shchipakov ◽  
V. V. Brovko ◽  
...  
2017 ◽  
Vol 93 (9-12) ◽  
pp. 3125-3134 ◽  
Author(s):  
J. Fortunato ◽  
Chirag Anand ◽  
Daniel F. O. Braga ◽  
R. M. Groves ◽  
P. M. G. P. Moreira ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
pp. 27-42
Author(s):  
A. Tamadon ◽  
D. J. Pons ◽  
K. Chakradhar ◽  
J. Kamboj ◽  
D. Clucas

Abstract A variety of tool shoulder designs comprising three families i.e. blade, spiral and circular shaped scrolls, were produced to improve the material flow and restrictions to avoid the tunnel void. The bobbin tools were manufactured by 3D printing additive manufacturing technology using solid filament. The butt weld joint was produced by each tool using plasticine as the workpiece material. The apparent surface features and bi-colour cross-sections provided a physical flow comparison among the shoulder designs. For the bobbin friction stir welding (BFSW), the tool shoulder with a three-spiral design produced the most stability with the best combination of the flow patterns on surface and cross-sections. The circular family tools showed a suitable intermixing on the surface pattern, while the blade scrolls showed better flow features within the cross-sections. The flow-driven effect of the shoulder features of the bobbin-tool design (inscribed grooves) was replicated by the 3D-printed tools and the analogue modelling of the weld samples. Similar flow patterns were achieved by dissimilar aluminium-copper weld, validating the accuracy of the analogue plasticine for the flow visualization of the bobbin friction stir welding.


2010 ◽  
pp. NA-NA ◽  
Author(s):  
Jiancun Rao ◽  
Eric J. Payton ◽  
Christoph Somsen ◽  
Klaus Neuking ◽  
Gunther Eggeler ◽  
...  

Author(s):  
Lewis N. Payton

Friction Stir Welding (FSW) is a solid-state joining process invented by The Welding Institute (TWI, United Kingdom) in 1991 in partnership with the National Aeronautics Space Agency. The process is emerging as one of the preferred alternative methods to permanently join materials that are difficult to join with traditional fusion methods (e.g., MIG, TIG, etc.). The welding of various copper alloys to various aluminum alloys is of great interest to the nuclear industry and the electrical distribution industry. The very different melting points of these two alloys preclude traditional fusion welding. Since the pin tool is simultaneously rotating and traversing through the work piece, flow around the tool is asymmetrical. This has led to designating one side of the tool as advancing and the opposite side as retreating. On the advancing side of the weld, the tool has a tangential velocity in the same direction as the weld is being created. The retreating side of the weld tool is the opposite. It can be can expected that asymmetric heating and deformation will occur in the weld due to this advancing/retreating nature of the FSW pin tool. Although previous studies have been performed that have observed this asymmetric behavior in both similar and dissimilar materials, the resulting welds have been of a poor quality. Large statistical experiments were conducted locally to study the effects of tool geometry, process parameters, and material composition have upon the friction stir butt welding of aluminum alloy 6061-T6 to copper alloy 11000 using a modern conventional 3-axis CNC vertical mill. The research seeks to determine (1) which direction a dissimilar metal friction stir weld between aluminum and copper should be executed, (2) the optimal shoulder diameter to be used when friction stir welding aluminum and copper on a CNC mill, and (3) the addition of a third material to act as an aide. The extensive statistical interactions between these parameters is also documented. A weld schedule was developed that resulted in an ultimate tensile strength (UTS) surpassing (greater than 90% of the weaker, more ductile copper alloy UTS strength) what has been documented in the current literature despite the machine limitations of the CNC vertical mill. Proper optimization of the welding schedule developed may approach 100 percent of the basic copper 11000 properties across the welded zone into the aluminum 6061-T6 alloy.


Sign in / Sign up

Export Citation Format

Share Document