13C and 15N NMR spectra of 1-(3- or 4-substituted phenyl)-3-methyl-3-phenyltriazenes

1984 ◽  
Vol 49 (4) ◽  
pp. 963-969 ◽  
Author(s):  
Antonín Lyčka ◽  
Pavel Vetešník

13C and 15N NMR spectra of ten 1-(3- or 4-substituted phenyl)-3-methyl-3-phenyltriazenes have been measured in deuteriochloroform. In the temperature range from 210 to 320 K the 13C NMR signals of both methyl and phenyl groups were not broadened, and no free rotation of the substituents at N(3)has been proved. From the values 2J(15N(2) 13C(5')) and 2J(15N(2)13C(1')) it was possible to determine conformation at the N(2) - N(3) bond which has partial double bond character. The value 1J(15N(1) 13C(1)) is equal to 1.0 Hz, which proves trans arrangement of the substituents at the N(1) = N(2) bond.

1980 ◽  
Vol 45 (10) ◽  
pp. 2766-2771 ◽  
Author(s):  
Antonín Lyčka

The 13C and 14N NMR spectra of 1M solutions of 1-(substituted phenyl)pyridinium salts (4-CH3, 4-OCH3, H, 4-Cl, 4-Br, 4-I, 3-NO2, 4-NO2, 2,4-(NO2)2 (the 13C NMR only)) have been measured in heavy water at 30 °C. The 13C and 14N chemical shifts, the 1J(CH) coupling constants, some 3J(CH) coupling constants, and values of half-widths Δ 1/2 of the 14N NMR signals are given. The 13C chemical shifts of C(4) correlate with the σ0 constants (δC(4) = (1.79 ± 0.097) σ0 + (147.67 ± 0.041)), whereas no correlation of the nitrogen chemical shifts with the σ constants has been found. The half-widths Δ 1/2 correlate with the σ0 constants (Δ 1/2 = (76.2 ± 4.9) σ0 + (106.4 ± 2.2)) except for 1-phenylpyridinium chloride.


2014 ◽  
Vol 307 (8) ◽  
pp. H1134-H1141 ◽  
Author(s):  
Colin Purmal ◽  
Blanka Kucejova ◽  
A. Dean Sherry ◽  
Shawn C. Burgess ◽  
Craig. R. Malloy ◽  
...  

Flux through pyruvate dehydrogenase (PDH) in the heart may be reduced by various forms of injury to the myocardium, or by oxidation of alternative substrates in normal heart tissue. It is important to distinguish these two mechanisms because imaging of flux through PDH based on the appearance of hyperpolarized (HP) [13C]bicarbonate derived from HP [1-13C]pyruvate has been proposed as a method for identifying viable myocardium. The efficacy of propionate for increasing PDH flux in the setting of PDH inhibition by an alternative substrate was studied using isotopomer analysis paired with exams using HP [1-13C]pyruvate. Hearts from C57/bl6 mice were supplied with acetate (2 mM) and glucose (8.25 mM). 13C NMR spectra were acquired in a cryogenically cooled probe at 14.1 Tesla. After addition of hyperpolarized [1-13C]pyruvate, 13C NMR signals from lactate, alanine, malate, and aspartate were easily detected, in addition to small signals from bicarbonate and CO2. The addition of propionate (2 mM) increased appearance of HP [13C]bicarbonate >30-fold without change in O2 consumption. Isotopomer analysis of extracts from the freeze-clamped hearts indicated that acetate was the preferred substrate for energy production, glucose contribution to energy production was minimal, and anaplerosis was stimulated in the presence of propionate. Under conditions where production of acetyl-CoA is dominated by the availability of an alternative substrate, acetate, propionate markedly stimulated PDH flux as detected by the appearance of hyperpolarized [13C]bicarbonate from metabolism of hyperpolarized [1-13C]pyruvate.


2015 ◽  
Vol 71 (12) ◽  
pp. o1086-o1087
Author(s):  
Ioannis Tiritiris ◽  
Willi Kantlehner

In the crystal structure of the title salt, C24H38N42+·2C24H20B−, the C—N bond lengths in the central CN3unit of the guanidinium ion are 1.3364 (13), 1.3407 (13) and 1.3539 (13) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3plane. The bonds between the N atoms and the terminal methyl groups of the guanidinium moiety and the four C—N bonds to the central N atom of the (benzyldimethylazaniumyl)propyl group have single-bond character. In the crystal, C—H...π interactions between the guanidinium H atoms and the phenyl C atoms of the tetraphenylborate ions are present, leading to the formation of a two-dimensional supramolecular pattern parallel to theacplane.


2012 ◽  
Vol 68 (6) ◽  
pp. o1812-o1812 ◽  
Author(s):  
Ioannis Tiritiris ◽  
Willi Kantlehner

The reaction of 3,3,3-tris(dimethylamino)-1-phenylprop-1-yne with bromine in pentane yields the title compound, C13H17N2 +·Br−. The acetylenic bond distance [1.197 (2) Å] is consistent with a C[triple-bond]C triple bond. The amidinium C=N bonds [1.325 (2) and 1.330 (2) Å] have double-bond character and the positive charge is delocalized between the two dimethylamino groups.


2005 ◽  
Vol 70 (9) ◽  
pp. 1447-1464 ◽  
Author(s):  
Miroslav Kvasnica ◽  
Iva Tišlerová ◽  
Jan Šarek ◽  
Jan Sejbal ◽  
Ivana Císařová

19β,28-Epoxy-4,5-seco-3,5-cyclo-18α-olean-3(5)-ene (2) is an appropriate compound for oxidations, which lead to new oxidized compounds with potential biological activities. Several oxidations were used such as epoxidation, allylic oxidation, oxidative cleavage of double bond and other ones. From the starting compound epoxides 3a, 3b and unsaturated ketone 4 were prepared. This ketone was further oxidized to diketone 6 and anhydride 7. The double bonds of all unsaturated compounds were cleaved with ruthenium tetroxide to afford new A-seco oleananes. The structure and stereochemistry of the compounds were derived from IR, MS, 1H and 13C NMR spectra (1D and 2D COSY, TOCSY, NOESY, HSQC, HMBC).


1955 ◽  
Vol 33 (1) ◽  
pp. 128-133 ◽  
Author(s):  
R. U. Lemieux ◽  
G. Huber

3,4,6-Tri-O-acetyl-β-D-glucopyranosyl chloride was found to undergo solvolysis in acetic acid to form 1,3,4,6-tetra-O-acetyl-α-D-glucopyranose as the main reaction product. The much less reactive anomeric α-chloride also appeared to undergo solvolysis with extensive inversion of the anomeric center. It is submitted that the tendencies for inversion obtained in these ionic reactions are due to the conformations imposed on the intermediate ions through distribution of the positive charge to the ring oxygen and the consequent introduction of double-bond character to the carbon-1 to ring-oxygen bond.


1986 ◽  
Vol 64 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Daniel Cozak ◽  
François Gauvin ◽  
Jacques Demers

The paramagnetic 1H nmr spectra for manganocene (1) and 1.1′-dimethylmanganocene (2), and the 13C nmr spectra for 1,1′-diethylmanganocene (3) have been recorded in toluene solvent over a −90 to 90 °C temperature range. 1 shows a low field and a high field ring proton resonance in its spectrum near −59 °C. At higher temperatures the low field resonance is prevalent and becomes gradually averaged due to a fast spin exchange process that dominates the spectrum at 90 °C. For the ring substituted derivatives 2 and 3, resonances due to only one paramagnetic species were detected in the low temperature range. Above ambient temperature a new spectrum due to rapid spin exchange averaging is observed for these complexes. Results are readily interpreted in terms of ground state molecular cross-over exchanges between the 2E2g, 6A1g, and 2A1g spin states of the complexes.


2006 ◽  
Vol 71 (8) ◽  
pp. 1131-1160 ◽  
Author(s):  
Martin Dračínský ◽  
Simona Hybelbauerová ◽  
Jan Sejbal ◽  
Miloš Buděšínský

New lupane-type triterpenoids with 5(6) double bond were prepared using the method of partial demethylation on carbon C-4. Hydroboration of the double bond led to 6α-hydroxy derivative. By the oxidation and following reduction of 6α-hydroxy derivative the 6-oxo and 6β-hydroxy derivatives were prepared. A new method for selective oxidation of secondary hydroxy group in the presence of primary hydroxy group was performed. The conformation of ring A of new lupane-type 3-oxo derivatives with a substituent on ring B was elucidated on the bases of 1H and 13C NMR spectra and molecular modelling.


Sign in / Sign up

Export Citation Format

Share Document