Free Level Effect on the Impeller Power Input in Baffled Tanks

1995 ◽  
Vol 60 (8) ◽  
pp. 1274-1280 ◽  
Author(s):  
Kamil Wichterle

Analysis of extended data on turbine impeller power input in geometrically similar agitated baffled tanks shows that the power number Po is a function of Reynolds number Po = Po*(Re) until the emergence of surface aeration. Though it is usually anticipated that Po* = const in high Reynolds number region, some, whatever weak, function should be taken into consideration in more detailed analysis of the power data even here. In practice, disturbances of level and gas captured in the impeller region play also a significant role, namely in smaller tanks at higher impeller speeds. Decrease of power input can be explained by decrease of gas-liquid mixture density, or in other words by increase of efficient gas holdup eE just in the impeller region. The value eE defined by the relation Po = Po*(Re)/(1 + eE) was determined from the available data. Like other effects of the surface aeration it depends mainly on the dimensionless number Nc = (We Fr)1/4. A simple correlation eE (Nc) is suggested as a correction factor for prediction of impeller power in presence of gas capture.

1994 ◽  
Vol 9 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Rahima K. Mohammed ◽  
Tim A. Osswald ◽  
Timothy J. Spiegelhoff ◽  
Esther M. Sun

2008 ◽  
Author(s):  
Steven L. Ceccio ◽  
David R. Dowling ◽  
Marc Perlin ◽  
Michael Solomon

1979 ◽  
Vol 44 (3) ◽  
pp. 700-710 ◽  
Author(s):  
Ivan Fořt ◽  
Hans-Otto Möckel ◽  
Jan Drbohlav ◽  
Miroslav Hrach

Profiles of the mean velocity have been analyzed in the stream streaking from the region of rotating standard six-blade disc turbine impeller. The profiles were obtained experimentally using a hot film thermoanemometer probe. The results of the analysis is the determination of the effect of relative size of the impeller and vessel and the kinematic viscosity of the charge on three parameters of the axial profile of the mean velocity in the examined stream. No significant change of the parameter of width of the examined stream and the momentum flux in the stream has been found in the range of parameters d/D ##m <0.25; 0.50> and the Reynolds number for mixing ReM ##m <2.90 . 101; 1 . 105>. However, a significant influence has been found of ReM (at negligible effect of d/D) on the size of the hypothetical source of motion - the radius of the tangential cylindrical jet - a. The proposed phenomenological model of the turbulent stream in region of turbine impeller has been found adequate for values of ReM exceeding 1.0 . 103.


1996 ◽  
Vol 61 (5) ◽  
pp. 681-690
Author(s):  
Kamil Wichterle ◽  
Tomáš Svěrák

Violent agitation of liquids in mixing vessels may result in the regime of surface aeration being attained when the bubbles formed at the liquid surface enter the impeller region. Analysis of data on surface aeration for different liquids in a set of geometrically similar agitated vessels is presented. Data on the just aerated state as observed visually in transparent liquids, and data for the efficient aeration as determined from the break on the power number curve are considered. A simple model is developed for correlation of the data which enables the threshold of aeration to be predicted from the value of the recirculation number Nc = Nd (ρ/σg)1/4. The possibility of interpreting various literature data for the aeration threshold and for the power input with use of Nc is demonstrated. Similar modelling rules hold also for the correlation of beginning of the efficient liquid-liquid dispersion.


Sign in / Sign up

Export Citation Format

Share Document