Covalent Analogues of DNA Base-Pairs and Triplets V. Synthesis of Purine-Purine and Purine-Pyrimidine Conjugates Connected by Diverse Types of Acyclic Carbon Linkages

2002 ◽  
Vol 67 (10) ◽  
pp. 1560-1578 ◽  
Author(s):  
Michal Hocek ◽  
Hana Dvořáková ◽  
Ivana Císařová

The title 1,2-bis(purin-6-yl)acetylenes, -diacetylenes, -ethylenes and -ethanes were prepared as covalent base-pair analogues starting from 6-ethynylpurines and 6-iodopurines by the Sonogashira cross-coupling or oxidative alkyne-dimerization reactions followed by hydrogenations. 6-[(1,3-Dimethyluracil-5-yl)ethynyl]purine (11) was prepared analogously and hydrogenated to the corresponding purine-pyrimidine conjugates linked via vinylene and ethylene linkers. Unlike the cytostatic bis(purin-6-yl)acetylenes and -diacetylenes, the purine-pyrimidine conjugates were inactive. Crystal structures of bis(purin-6-yl)acetylene 6a, -diacetylene 8a and -ethane 5a were determined by single-crystal X-ray diffraction.

2004 ◽  
Vol 69 (10) ◽  
pp. 1955-1970 ◽  
Author(s):  
Petr Nauš ◽  
Ivan Votruba ◽  
Michal Hocek

The title bis(purin-6-yl)acetylene and -diacetylene nucleoside derivatives were prepared as covalent base-pair analogues starting from acyl-protected 6-ethynylpurine and 6-iodopurine nucleosides by the Sonogashira cross-coupling or oxidative alkyne-dimerization reactions followed by deprotection. The key starting acyl-protected 6-ethynylpurine nucleosides were prepared by a sequence of cross-coupling reactions of protected 6-halopurine nucleosides with (trimethylsilyl)acetylene followed by a modified desilylation with TBAF in presence of acetic acid. Surprisingly, the acyl-protected nucleosides exhibited significant cytostatic activity higher than the fully deprotected title compounds.


Author(s):  
P. Vojtíšek ◽  
I. Císařová ◽  
J. Podlaha ◽  
Z. Žák ◽  
S. Böhm ◽  
...  

AbstractCrystal structures of the title compounds were determined by single crystal X-ray diffraction. Absolute configuration of the barium salt of (+)-(


1991 ◽  
Vol 46 (5) ◽  
pp. 566-572 ◽  
Author(s):  
Axel Gudat ◽  
Peter Höhn ◽  
Rüdiger Kniep ◽  
Albrecht Rabenau

The isotypic ternary compounds Ba3[MoN4] and Ba3[WN4] were prepared by reaction of the transition metals with barium (Ba3N2, resp.) under nitrogen. The crystal structures were determined by single crystal X-ray diffraction: Ba3[MoN4] (Ba3[WN4]): Pbca; Z = 8; a = 1083.9(3) pm (1091.8(3) pm), b = 1030.3(3) pm (1037.5(3) pm), c = 1202.9(3) pm (1209.2(4) pm). The structures contain isolated tetrahedral anions [MN4]6- (M = Mo, W) which are arranged in form of slightly distorted hexagonal layers and which are stacked along [010] with the sequence (···AB···). Two of the three Ba atoms are situated between, the third one is placed within the layers of [MN4]-groups. In this way the structures can be derived from the Na3As structure type.


2012 ◽  
Vol 67 (6) ◽  
pp. 589-593 ◽  
Author(s):  
Daniel Winkelhaus ◽  
Beate Neumann ◽  
Norbert W. Mitzel

The reaction of (C6F5)2BCl with 8-lithio-N,N-dimethyl-1-naphthylamine (1) afforded the fivemembered ring system 8-bis(pentafluorophenyl)boryl-N,N-dimethyl-1-naphthylamine (2) with an intramolecular dative B-N bond. The compound was characterised by elemental analysis, NMR spectroscopy and single-crystal X-ray diffraction.


1985 ◽  
Vol 38 (8) ◽  
pp. 1243 ◽  
Author(s):  
JC Dyason ◽  
LM Engelhardt ◽  
C Pakawatchai ◽  
PC Healy ◽  
AH White

The crystal structures of the title compounds have been determined by single-crystal X-ray diffraction methods at 295 K. Crystal data for (PPh3)2CuBr2Cu(PPh3) (1) show that the crystals are iso-morphous with the previously studied chloro analogue, being monoclinic, P21/c, a 19.390(8), b 9.912(5), c 26.979(9) Ǻ, β 112,33(3)°; R 0.043 for No 3444. Cu( trigonal )- P;Br respectively are 2.191(3); 2.409(2), 2.364(2) Ǻ. Cu(tetrahedral)- P;Br respectively are 2.241(3), 2.249(3); 2.550(2), 2.571(2) Ǻ. Crystals of 'step' [PPh3CuBr]4 (2) are isomorphous with the solvated bromo and unsolvated iodo analogues, being monoclinic, C2/c, a 25.687(10), b 16.084(7), c 17.815(9) Ǻ, β 110.92(3)°; R 0.072 for No 3055. Cu( trigonal )- P;Br respectively are 2.206(5); 2.371(3), 2.427(2) Ǻ. Cu(tetrahedral)- P;Br are 2.207(4); 2.446(2), 2.676(3), 2.515(3) Ǻ.


Author(s):  
William W. Brennessel ◽  
John E. Ellis

The reaction of the [K(18-crown-6)(thf)2]1+ (thf is tetrahydrofuran) salt of bis(anthracene)ferrate(−1), or [Fe(C14H10)2]−, with 2,6-dimethylphenyl isocyanide (CNXyl) in thf resulted in the formation of two new iron isocyanide complexes, namely, [(1,2,3,4-η)-anthracene]tris(2,6-dimethylphenyl isocyanide)iron, [Fe(C14H10)(C9H9N)3] or [Fe(1,2,3,4-η-C14H10)(CNXyl)3], and {5,6-bis(2,6-dimethylanilino)-3-(2,6-dimethylphenyl)-1,2,7-tris[(2,6-dimethylphenyl)imino]-3-azoniahept-3-ene-1,4,7-triido}tris(2,6-dimethylphenyl isocyanide)iron tetrahydrofuran disolvate, [Fe(C54H56N6)(C9H9N)3]·2C4H8O or [Fe(C54H56N6)(CNXyl)3]·2C4H8O, which were characterized by single-crystal X-ray diffraction. The former is likely an intermediate along the path to the known homoleptic [Fe(CNXyl)5], while the latter contains a tridentate ligand that is formed from the `coupling' of six CNXyl ligands. A third crystal structure from this reaction, (7-methylindol-1-ido-κN)(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6 O)potassium, [K(C9H8N)(C12H24O6)] or [K(C9H8N)(18-crown-6)], contains a 7-methylindol-1-ide anion, in which one CNXyl ligand has shed a proton during its reductive cyclization.


2002 ◽  
Vol 57 (10) ◽  
pp. 1090-1100
Author(s):  
Franziska Emmerling ◽  
Caroline Röhr

AbstractThe title compounds were synthesized at a temperature of 700 °C via oxidation of elemental Bi with the hyperoxides AO2 or via reaction of the elemental alkali metals A with Bi2O3. Their crystal structures have been determined by single crystal x-ray diffraction. They are dominated by two possible surroundings of Bi by O, the ψ-trigonal-bipyramidal three (B) and the ψ-tetrahedral four (T) coordination. Cs6Bi4O9 (triclinic, spacegroup P1̄, a = 813.82(12), b = 991.60(14), c = 1213.83(18) pm, α = 103.658(2), β = 93.694(3), γ = 91.662(3)°, Z = 2) contains centrosymmetric chain segmentes [Bi8O18]12- with six three- (T) and two four-coordinated (B) Bi(III) centers. K9Bi5O13 (monoclinic, spacegroup P21/c, a = 1510.98(14), b = 567.59(5), c = 2685.6(2) pm, β = 111.190(2)°, Z = 4) is a mixed valence compound with isolated [BivO4]3- tetrahedra and chains [BiIII4O9]6- of two T and two B coordinated Bi. In the compounds A2Bi4O7 (A = Rb/Cs: monoclinic, C2/c, a = 2037.0(3) / 2130.6(12), b = 1285.5(2) / 1301.9(7), c = 1566.6(2) / 1605.6(9) pm, β = 94.783(3) / 95.725(9)°, Z = 8) ribbons [Bi4O6O2/2]2- are formed, which are condensed to form a three-dimensional framework.


1980 ◽  
Vol 33 (2) ◽  
pp. 313 ◽  
Author(s):  
PR Jefferies ◽  
BW Skelton ◽  
B Walter ◽  
AH White

Following the suggestion made earlier, on the basis of solution spectroscopy, that a number of eriostyl/nitrobenzoate compounds form charge-transfer self-complexes, a number of these have been investigated structurally by single-crystal X-ray diffraction methods in order to ascertain the presence or otherwise of such interactions in the solid state. The substances thus studied were eriostyl 3,5-dinitrobenzoate (1), eriostyl p-nitrobenzoate (2), tetrahydroeriostyl 3,5-dinitrobenzoate (3), and eriostemyl 3,5-dinitrobenzoate (4);* structure determinations in all cases, although displaying the presence of strong charge-transfer interactions from the two moieties of each molecule, show that the interactions in the solid state are intermolecular in nature.


1987 ◽  
Vol 42 (12) ◽  
pp. 1493-1499 ◽  
Author(s):  
Siegfried Pohl ◽  
Wolfgang Saak ◽  
Detlev Haase

AbstractThe compounds (Pn4P)4Sb8I28 (1) and (Ph4P)Sb3I10 (2) were prepared by the reaction of SbI3 and Ph4PI in acetonitrile (molar ratios 2:1 and 3:1 respectively). The structures of 1 and 2 were determined from single crystal X-ray diffraction data.1 crystallizes in the triclinic space group P1̄ with a - 1321.7(5). b = 1346.7(5), c = 2201.8(8) pm, α = 104.18(2). β = 99.92(2), γ = 100.33(2)°; 2: monoclinic, C2/c, a = 2371.1(2), b = 745.0(1), c = 2495.1(2) pm, β = 100.75(1)°.Whereas 1 exhibits isolated Sb8I284- ions, the anions of 2 are built up of polymeric chains [Sb3I10- ]∞. In both compounds the distorted Sbl6 octahedra are linked by common edges. The Sb-I distances are in the range between 277.4 and 354.8 pm (1) and between 277.4 and 342.4 pm (2). The observed structures do not only depend on stoichiometry, the nature of the counter cations, and the possibility of oligomerisation but also on the wide variety of the Sb-I bond strengths and the different bridges formed by iodine.The lone pair of Sb(III) seems to be predominantly 5 s2.


2019 ◽  
Vol 116 (45) ◽  
pp. 22471-22477 ◽  
Author(s):  
Francesco Colizzi ◽  
Cibran Perez-Gonzalez ◽  
Remi Fritzen ◽  
Yaakov Levy ◽  
Malcolm F. White ◽  
...  

The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.


Sign in / Sign up

Export Citation Format

Share Document