Kinetics and Mechanism of Acid Catalysed Hydration of α-Methylstyrenes

2007 ◽  
Vol 72 (8) ◽  
pp. 1025-1036 ◽  
Author(s):  
Oldřich Pytela ◽  
Bronislav Trlida

Twelve para-substituted α-methylstyrenes with substituents H, CH3, CF3, CH3O, CH3S, F, Cl, Br, CH3CO, CH3SO2, CN a NO2 were synthesised; additionally, the acid catalysed hydration kinetics of these compounds were measured in sulfuric acid in a concentration range c from 0.017 to 9.58 mol l-1, at 25.0 °C. The observed rate constants obtained were used to construct the kinetic acidity function and calculate the catalytic rate constants. Based on the evaluation of the acidity function kinetic dependence on acid medium concentration, and the substituent effects of acid catalysed hydration of α-methylstyrenes on the catalytic rate constants, the mechanism of acid catalysed hydration was verified. The mechanism involves the addition of a proton to the double bond of α-methylstyrene in the rate-limiting reaction step denoted as A-SE2. No evident difference was found between the effects of the acid medium on the acid catalysed hydration of styrenes and α-methylstyrenes, which indicates very similar activity coefficients of the reactants, and of the transition state of both substrates. The substituent effects evaluation shows that the rate-limiting step of the reaction consists in the addition of a proton to the substrate. The carbocation formation in the transition state of this reaction step proceeds roughly half-way compared with the extent of the carbocation formation by cumyl chloride hydrolysis. The obtained carbocation is in particular stabilised by the substituents with +M effect, while the influence of the substituents with -M and I effects is significantly smaller.


1987 ◽  
Vol 52 (9) ◽  
pp. 2212-2216
Author(s):  
Oldřich Pytela ◽  
Martin Kaska ◽  
Miroslav Ludwig ◽  
Miroslav Večeřa

The decomposition kinetics has been measured of fourteen 3-acetyl-1,3-bis(subst. phenyl)triazenes in 40% (v/v) ethanol and sulphuric acid. The kinetic acidity function and catalytic rate constants have been determined from the rate constants observed. Mechanism has been suggested for the general acid-catalyzed solvolysis from comparison of the course of the kinetic acidity function and H0 function and from the reaction constant of the Hammett equation.



1990 ◽  
Vol 55 (10) ◽  
pp. 2468-2474 ◽  
Author(s):  
Oldřich Pytela ◽  
Vladimír Dlouhý

Eight 1-(2-ethoxycarbonylphenyl)-3-aryltriazenes have been synthetized and the rate constants of their sodium-methoxide-catalyzed cyclization have been measured in methanol at 25 °C. The experimental rate constants kobs have been adopted to construct the kinetic acidity function HKM which has been shown to be identical with the -log[CH3O-] values. Two mathematical procedures have been used to determine the catalytic rate constants and their dependence on the Hammett substituent constants. A closer dependence is obtained with the σ values than with the σp- values. The ρ value found (0.3) indicates a compensation of the substituent effects upon the dissociation of the starting triazene and upon the subsequent reaction of the conjugated base. Out of the two mechanistic alternatives - E1cB and BAc2 - the latter appears to be more probable, the splitting of tetrahedral intermediate being its limiting step.



1999 ◽  
Vol 77 (5-6) ◽  
pp. 760-773 ◽  
Author(s):  
Sadjia Bennour ◽  
Jean Toullec

The reaction of equilibrium addition of methanol (α-amino ether formation) to benzylideneanilines (C6H5=NC6H4Y, with Y = H (1a), 3-Cl (1b), 3-NO2 (1c), 4-CN (1d), and 4-NO2(1e)) in methanol is shown to be general acid-catalyzed in carboxylic acid buffers. The mechanism involves fast iminium ion formation followed by base-assisted addition of methanol. The α Brønsted exponents are in the 0.67-0.88 range, and α increases with the electron-withdrawing ability of Y. The same mechanism is valid for MeOH2+-catalysis, meaning that two solvent molecules are involved in the addition process, one of them playing the role of base. The equilibrium constant, K, is increased by electron-withdrawing substituents, log K depending linearly on the σ- substituent parameters. The substituent effects on the forward and reverse catalytic rate constants are analyzed by means of the log k = ρnσn + ρr(σ- - σn) + constant (Young-Jencks) equation. For carboxylic acid catalysis, the ρn and ρr parameters are in keeping with ca. half C—O bond forming or breaking at the transition state. The catalytic rate constants and α exponent for elimination of ClCH2CH2OH in methanol from the C6H5CH(OCH2CH2Cl)NH(4-CNC6H4) chloroethyl adduct are compared with those for the elimination of methanol from C6H5CH(OCH3)NH(4-CNC6H4). The chloromethyl group makes the reaction slower and α lower. This indicates that proton transfer is a little ahead of C—O bond cleavage at the transition state. Y substituent effects, α values, and the effects of the CH2Cl group are interpreted on the basis of a More O'Ferrall - Jencks diagram.Key words: imine, free energy linear relationship, nucleophilic addition, More O'Ferrall - Jencks diagram, Schiff base



2020 ◽  
Author(s):  
Vincent Wang

<p>The development of an electrocatalyst with a rapid turnover frequency, low overpotential and long-term stability is highly desired for fuel-forming reactions, such as water splitting and CO<sub>2</sub> reduction. The findings of the scaling relationships between the catalytic rate and thermodynamic parameters over a wide range of electrocatalysts in homogeneous and heterogeneous systems provide useful guidelines and predictions for designing better catalysts for those redox reactions. However, such relationships also suggest that a catalyst with a high catalytic rate is typically associated with a high overpotential for a given reaction. Inspired by enzymes, the introduction of additional interactions through the secondary coordination sphere beyond the active site, such as hydrogen-bonding or electrostatic interactions, have been shown to offer a promising avenue to disrupt these unfavorable relationships. Herein, we further investigate the influence of these cooperative interactions on the faster chemical steps, in addition to the rate-limiting step widely examined before, for molecular electrocatalysts with the structural and electronic modifications designed to facilitate the dioxygen reduction reaction, CO<sub>2</sub> reduction reaction and hydrogen evolving reaction. Based on the electrocatalytic kinetic analysis, the rate constants for faster chemical steps and their correlation with the corresponding thermodynamic parameters are evaluated. The results suggest that the effects of the secondary coordination sphere and beyond on these fuel-forming reactions are not necessarily beneficial for promoting all chemical steps and no apparent relation between rate constants and thermodynamic parameters are found in some cases studied here, which may implicate the design of electrocatalysts in the future. Finally, these analyses demonstrate that the characteristic features for voltammograms and foot-of-the-wave-analysis plots are associated with the specific kinetic phenomenon among these multi-electron electrocatalytic reactions, which provides a useful framework to probe the insights of chemical and electronic modifications on the catalytic steps quantitatively (i.e. kinetic rate constants) and to optimize some of critical steps beyond the rate-limiting step.</p>



1984 ◽  
Vol 62 (8) ◽  
pp. 1646-1652 ◽  
Author(s):  
Michel Békhazi ◽  
Peter J. Smith ◽  
John Warkentin

2-Aryl-2-methoxy-5,5-dimethyl-Δ3-1,3,4-oxadiazolines (4) and 5-aryl-2-methoxy-2,5-dimethyl-Δ3-1,3,4-oxadiazolines (5) were synthesized. Compounds 4 decompose in solution with first order kinetics. Rate constants are correlated with Hammett substituent constants (σ−) with ρ(49.2 °C) = 0.74 and 0.89 for CCl4, and CD3OD, respectively. The final products from 4 indicate that thermolysis involves the cleavage of both C—N bonds, to form N2 and, initially, a carbonyl ylide. Compounds 5, which were obtained as mixtures of cis/trans isomers containing several impurities, and which therefore gave poorer kinetic data, decomposed in CDCl3 solution with [Formula: see text] Carbonyl ylide intermediates, similar to those from the closelyrelated compounds 4, were assumed on the basis of analogy and on the basis of partial identification of products. The effects of para substituents in the aryl groups of 4 and 5 show that the transition states have greater electron density at C-2 of 4 and at C-5 of 5 than do the starting materials. In spite of the increase in electron density at C-2 of 4, the transition state must be less polar, overall, than the ground state because rate constants for thermolysis of 4 in methanol are smaller than those for CCl4, solvent. A plausible explanation for the substituent effects and the solvent effects is that the loss of N2 is concerted, with a transition state resembling more closely a spin paired 1,3-diradical than a 1,3-dipole. Alternative stepwise mechanisms, in which C2—N3 bond scission of 4 and C5—N4 bond scission of 5 are the rate-determining steps, leading to 1,5-diradical intermediates, can not be excluded on the basis of the evidence.



2001 ◽  
Vol 79 (12) ◽  
pp. 1887-1897
Author(s):  
Thuy Van Pham ◽  
Robert A McClelland

Transition-state structures for the carbocation–nucleophile combination reactions of (4-substituted-4'- methoxydiphenyl)methyl cations with water, chloride, and bromide ions in acetonitrile–water mixtures have been investigated by measuring the secondary α-deuterium kinetic and equilibrium isotope effects. Rate constants in the combination direction were measured with laser flash photolysis. Equilibrium constants were measured for the water reaction by a comparison method in moderately concentrated sulfuric acid solutions, for the bromide reaction via the observation of reversible combination, and for the chloride reaction from the ratio of the combination rate constant and the rate constant for the ionization of the diarylmethyl chloride product. The fraction of bond making in the transition state has been calculated as the ratio log (kinetic isotope effect):log (equilibrium isotope effect). For the water reaction, there is 50–65% bond making in the transition state; this is also true for cations that are many orders of magnitude less reactive. The same conclusions, 50–65% bond formation in the transition state independent of reactivity, have previously been made in correlations of log kw vs. log KR. Thus, two quite different measures of transition structure provide the same result. The kH:kD values for the halide combinations in 100% acetonitrile are within experimental error of unity. This is consistent with suggestions that these reactions are occurring with diffusional encounter as the rate-limiting step. Addition of water has a dramatic retarding effect on the halide reactions, with rate constants decreasing steadily with increased water content. Small inverse kinetic isotope effects are observed (in 20% acetonitrile:80% water) indicating that carbon—halogen bond formation is rate-limiting. Comparison of the kinetic and equilibrium isotope effects shows ~25 and ~40% bond formation in the transition states for the reactions with bromide and chloride, respectively.Key words: carbocation, isotope effect, transition state, halide.



1991 ◽  
Vol 56 (8) ◽  
pp. 1662-1670 ◽  
Author(s):  
Ivan Danihel ◽  
Falk Barnikol ◽  
Pavol Kristian

The reaction of para-substituted phenyl isocyanates with amines and alcohols was studied by stopped-flow method. The Hammett correlation obtained showed that the sensitivity of the above mentioned reactions toward substituent effects is the same as that of analogous reactions of phenyl isothiocyanates (ρ ~ 2). The rate constants of these reactions were found to be affected more by steric effects than by solvent effects. An one step multicentre mechanism with partial charges in transition state has been proposed for the title reactions.



2009 ◽  
Vol 74 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Ondřej Prusek ◽  
Filip Bureš ◽  
Oldřich Pytela

α-Methylstyrene and nine ortho-substituted analogs have been synthesized and the kinetics of their acid-catalyzed hydration in aqueous solutions of sulfuric acid at 25 °C have been investigated. The kinetic acidity function HS has been constructed from the dependence of the observed rate constants kobs on the sulfuric acid concentration. The catalytic rate constants of the acid-catalyzed hydration kortho have been calculated as well. The identical shape of the kinetic acidity functions for ortho- and para-derivatives confirms what the consistent mechanism A-SE2 of the acid-catalyzed hydration has already proved for the corresponding para-derivatives. The A-SE2 mechanism involves a rate-determining proton transfer of the hydrated proton to the substrate. From the dependence of the catalytic rate constants of the ortho-derivatives on the catalytic rate constants of the para-derivatives, it is seen that the logarithm of the catalytic rate constant for hydrogen as a substituent is markedly out of the range of the other substituents and, simultaneously, that the ortho-derivatives react significantly slower than the corresponding para-derivatives. In correlation with the substitent constants σp+, a reaction constant of ρ+ = –1.45 have been found. The constant is, in absolute value, considerably smaller than that for para-derivatives (ρ+ = –3.07). In parallel, the steric effects are enforced more significantly for the monoatomic substituents (slope of the Charton’s constants 3.92) than for substituents including more atoms (slope of the Charton’s constants 2.09). A small value of the reaction constant ρ+ has been elucidated due to the lower conjugation between the reaction centre and the benzene ring as a consequence of the geometric twist of the reaction centre out of the main aromatic plane accompanied by fading mesomeric interaction between the reaction centre and the substituents attached to the benzene ring. The isopropyl group in the carbocation is twisted less out of the aromatic plane for the monoatomic substituents and, therefore, also a small difference in the bulk of substituents has considerable steric influence on the conjugation between the carbocation and the benzene ring bearing substituents. On the contrary, the isopropyl group in the carbocations with polyatomic substituents is twisted to such a degree that changes in the bulk of substituents affect the resonant stabilization negligibly. Similar conclusions were also deduced from the correlations of the substitution constants σI and σR+.





1998 ◽  
Vol 76 (6) ◽  
pp. 919-928 ◽  
Author(s):  
Zhao Wang ◽  
W David Chandler ◽  
Donald G Lee

Possible mechanisms for the oxidation of alcohols by dioxoruthenium(VI) complexes are critically evaluated. Rate constants for the reduction of trans-[(TMC)RuVI(O)2]++ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) by substituted benzhydrols are correlated more satisfactorily with Hammett σ substituent constants ( rho = -1.44 ± 0.08, r2 = 0.98) than with σ + substituent constants ( rho = -0.72 ± 0.11, r2 = 0.83). Similar observations for the oxidation of substituted benzyl alcohols have recently been reported, confirming that the transition state for these reactions is not carbocation-like. Primary deuterium isotope effects indicate that cleavage of the α -C-H bond is rate-limiting. The lack of an observable O-D isotope effect and the ease of oxidation of ethers indicates that the presence of a hydroxyl is not essential. The previously reported observation that cyclobutanol is quantitatively converted into cyclobutanone by dioxoruthenium(VI) complexes eliminates free-radical intermediates from consideration as part of the mechanism, and negative entroπes of activation (-Δ Sdouble dagger = 96-137 J mol-1 K-1) suggest a structured transition state. Only two of eight possible reaction mechanisms considered were found to be consistent with the available data. A critical analysis of the available data indicates that a 2 + 2 (C-H + Ru font 35137 roman T O) addition and a reaction initiated by ligand formation through the interaction of the reductant's HOMO with the oxidant's LUMO are the most likely reaction mechanisms.Key words: oxidation, alcohols, ruthenium(VI), mechanism, substituent effects.



Sign in / Sign up

Export Citation Format

Share Document