Mechanisms for the oxidation of secondary alcohols by dioxoruthenium(VI) complexes

1998 ◽  
Vol 76 (6) ◽  
pp. 919-928 ◽  
Author(s):  
Zhao Wang ◽  
W David Chandler ◽  
Donald G Lee

Possible mechanisms for the oxidation of alcohols by dioxoruthenium(VI) complexes are critically evaluated. Rate constants for the reduction of trans-[(TMC)RuVI(O)2]++ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) by substituted benzhydrols are correlated more satisfactorily with Hammett σ substituent constants ( rho = -1.44 ± 0.08, r2 = 0.98) than with σ + substituent constants ( rho = -0.72 ± 0.11, r2 = 0.83). Similar observations for the oxidation of substituted benzyl alcohols have recently been reported, confirming that the transition state for these reactions is not carbocation-like. Primary deuterium isotope effects indicate that cleavage of the α -C-H bond is rate-limiting. The lack of an observable O-D isotope effect and the ease of oxidation of ethers indicates that the presence of a hydroxyl is not essential. The previously reported observation that cyclobutanol is quantitatively converted into cyclobutanone by dioxoruthenium(VI) complexes eliminates free-radical intermediates from consideration as part of the mechanism, and negative entroπes of activation (-Δ Sdouble dagger = 96-137 J mol-1 K-1) suggest a structured transition state. Only two of eight possible reaction mechanisms considered were found to be consistent with the available data. A critical analysis of the available data indicates that a 2 + 2 (C-H + Ru font 35137 roman T O) addition and a reaction initiated by ligand formation through the interaction of the reductant's HOMO with the oxidant's LUMO are the most likely reaction mechanisms.Key words: oxidation, alcohols, ruthenium(VI), mechanism, substituent effects.

1993 ◽  
Vol 71 (9) ◽  
pp. 1394-1400 ◽  
Author(s):  
Donald G. Lee ◽  
Huifa Gai

A kinetic study of the reduction of ferrate ion under basic conditions has been completed. The observation that a typical aliphatic ether, tetrahydrofuran, is oxidized at a rate comparable to that of aliphatic alcohols, such as cyclopentanol, indicates that the reaction between ferrate and alcohols is likely initiated by attack of the oxidant at an α-C—H bond, a conclusion that is consistent with the occurrence of primary deuterium kinetic isotope effects (2.8–4.3 at 25 °C) when α-hydrogens are replaced by deuterium. Because only acyclic products are obtained from the oxidation of cyclobutanol by ferrate, it may be concluded that free radical intermediates are involved in the reaction. The insensitivity of the reaction rates to substituent effects during the oxidation of substituted mandelic acids indicates that substantial charges are not built up in the transition state. All of these observations are most readily accommodated by a mechanism in which the reaction is initiated by a 2 + 2 addition of an Fe=O bond to the α-C—H of an alcohol to give an organometallic intermediate that subsequently decomposes by homolytic cleavage of the resulting C—Fe bond. Comparisons are made with the reactions between alcohols and other high-valent transition metal oxides.


1966 ◽  
Vol 21 (9) ◽  
pp. 1377-1384
Author(s):  
A. V. Willi

Kinetic carbon-13 and deuterium isotope effects are calculated for the SN2 reaction of CH3I with CN-. The normal vibrational frequencies of CH3I, the transition state I · · · CH3 · · · CN, and the corresponding isotope substituted reactants and transition states are evaluated from the force constants by solving the secular equation on an IBM 7094 computer.Values for 7 force constants of the planar CH3 moiety in the transition state (with an sp2 C atom) are obtained by comparison with suitable stable molecules. The stretching force constants related to the bonds being broken or newly formed (fCC, fCC and the interaction between these two stretches, /12) are chosen in such a way that either a zero or imaginary value for νʟ≠ will result. Agreement between calculated and experimental methyl-C13 isotope effects (k12/ k13) can be obtained only in sample calculations with sufficiently large values of f12 which lead to imaginary νʟ≠ values. Furthermore, the difference between fCI and fCC must be small (in the order of 1 mdyn/Å). The bending force constants, fHCI and fHCC, exert relatively little influence on k12/k13. They are important for the D isotope effect, however. As soon as experimental data on kH/kD are available it will be possible to derive a value for fHCC in the transition state if fHCI is kept constant at 0.205 mdynA, and if fCI, fCC and f12 are held in a reasonable order of magnitude. There is no agreement between experimental and calculated cyanide-C13 isotope effects. Possible explanations are discussed. — Since fCI and fCC cannot differ much it must be concluded that the transition state is relatively “symmetric”, with approximately equal amounts of bond making and bond breaking.


1999 ◽  
Vol 77 (3) ◽  
pp. 308-312 ◽  
Author(s):  
Alfons L Baumstark ◽  
Franci Kovac ◽  
Pedro C Vasquez

The oxidation of several series of secondary alcohols 2-9, ethers 10-17, and related derivatives 18 and19, by dimethyldioxirane, 1, in acetone at 25°C produced the corresponding ketones in good to excellent yields for all but two cases. (The exceptions: oxidation of 1-methoxy-2-methyl-1-phenylpropane (48%) and 1-methoxy-2,2-dimethyl-1-phenylpropane (24%).) The oxidation of the secondary alcohols was found to yield k2 values that were roughly 10-fold greater than those of the corresponding methyl ethers. The rate constant for oxidation of a silyl ether was slightly lower than that for the corresponding methyl ether while that for the ester derivative was roughly half the value. For oxidation of alcohols and methyl ethers, the k2 values became smaller as the R " series (Me, Et, nPr, iPr, and tBu) increased in steric bulk (ρ* = 1.7; r = 0.998 and ρ* = 3.2; r = 0.95, respectively). The Hammett study for the oxidation of the methyl ethers of α-methyl-p-benzyl alcohols (10, 20-25) yielded a ρ value of -0.74. The activation parameters for oxidation of the parent compound of the ether series (1-methoxy-1-phenylethane) were ΔH‡ = 14.8 ± 0.5 kcal/mol, ΔS‡ = -21.9 eu, ΔG‡ = 21.3 kcal/mol, k2 (25°C) = 1.6 × 10-3 M-1 s-1. The mechanistic aspects of the oxidation are discussed in relation to two mechanistic extremes: (a) direct insertion of the oxygen atom into the C—H bond and (b) direct abstraction of the H by dimethyldioxirane to yield a caged-radical pair, with subsequent coupling to hemi-ketal intermediates that fragment to yield acetone, alcohol or water, and ketone as the final products.Key words: dimethyldioxirane, oxidation.


1984 ◽  
Vol 62 (8) ◽  
pp. 1646-1652 ◽  
Author(s):  
Michel Békhazi ◽  
Peter J. Smith ◽  
John Warkentin

2-Aryl-2-methoxy-5,5-dimethyl-Δ3-1,3,4-oxadiazolines (4) and 5-aryl-2-methoxy-2,5-dimethyl-Δ3-1,3,4-oxadiazolines (5) were synthesized. Compounds 4 decompose in solution with first order kinetics. Rate constants are correlated with Hammett substituent constants (σ−) with ρ(49.2 °C) = 0.74 and 0.89 for CCl4, and CD3OD, respectively. The final products from 4 indicate that thermolysis involves the cleavage of both C—N bonds, to form N2 and, initially, a carbonyl ylide. Compounds 5, which were obtained as mixtures of cis/trans isomers containing several impurities, and which therefore gave poorer kinetic data, decomposed in CDCl3 solution with [Formula: see text] Carbonyl ylide intermediates, similar to those from the closelyrelated compounds 4, were assumed on the basis of analogy and on the basis of partial identification of products. The effects of para substituents in the aryl groups of 4 and 5 show that the transition states have greater electron density at C-2 of 4 and at C-5 of 5 than do the starting materials. In spite of the increase in electron density at C-2 of 4, the transition state must be less polar, overall, than the ground state because rate constants for thermolysis of 4 in methanol are smaller than those for CCl4, solvent. A plausible explanation for the substituent effects and the solvent effects is that the loss of N2 is concerted, with a transition state resembling more closely a spin paired 1,3-diradical than a 1,3-dipole. Alternative stepwise mechanisms, in which C2—N3 bond scission of 4 and C5—N4 bond scission of 5 are the rate-determining steps, leading to 1,5-diradical intermediates, can not be excluded on the basis of the evidence.


2018 ◽  
Vol 47 (1) ◽  
pp. 240-245 ◽  
Author(s):  
Jianhui Xie ◽  
Po-Kam Lo ◽  
Chow-Shing Lam ◽  
Kai-Chung Lau ◽  
Tai-Chu Lau

The oxidation of alcohols by [FeO4]2− in aqueous solution is found to proceed via a hydrogen atom transfer (HAT) mechanism based on deuterium isotope effects, correlation between rate constants and bond dissociation energies (BDEs) and DFT calculations.


1972 ◽  
Vol 50 (7) ◽  
pp. 982-985 ◽  
Author(s):  
K. T. Leffek ◽  
A. F. Matheson

Secondary kinetic deuterium isotope effects are presented for the reaction of methyl-d3 iodide and pyridine in four different solvents. Calculations on mass and moment of inertia change with deuteration in the initial state and an assumed tetrahedral transition state, together with internal rotational effects, are used to rationalize the inverse isotope effects. It is concluded from the variation of the isotopic rate ratio, that the transition state structure varies with solvent.


1983 ◽  
Vol 36 (8) ◽  
pp. 1503
Author(s):  
DJ McLennan

Model calculations of primary and secondary deuterium isotope effects for the hydroxide-induced deprotonation of 2-nitropropane are reported. Various transition-state models have been examined in an effort to reproduce experimental results. A purely pyramidal transition state in which proton transfer has run far ahead of carbon rehybridization and charge delocalization is a successful model as far as isotope effects are concerned, but may fail on other counts. Three incipient trigonal models for the transition state have been tested, and, although none can be firmly eliminated by the resultant isotope effects, those involving the proton transfer's running ahead of electron delocalization and perhaps carbon rehybridization are favoured.


Sign in / Sign up

Export Citation Format

Share Document