Pyrrolidine nucleotides conformationally constrained via hydrogen bonding

Author(s):  
Radek Pohl ◽  
Lenka Poštová Slavětínská ◽  
Dominik Rejman
1995 ◽  
Vol 50 (9-10) ◽  
pp. 708-714
Author(s):  
V. Kettmann ◽  
J. Sivý

Abstract We report here a molecular modeling study of selected conformationally constrained phenylcarbamate local anesthetics in relation to the available pharmacological data that enabled us to develop a receptor-interaction model for this class of drugs. The validity of the model was confirmed on other semirigid analogues prepared for this study. The results suggest that the phenyl ring is most likely involved in a stacking interaction with a complementary receptor site and the tertiary ammonium group is capable of both hydrogen bonding and lipophilic interactions.


2000 ◽  
Vol 98 (3) ◽  
pp. 125-134 ◽  
Author(s):  
T. Weitkamp, J. Neuefeind, H. E. Fisch

1995 ◽  
Author(s):  
Thomas P. Davis ◽  
Thomas J. Abbruscato ◽  
Elizabeth Brownson ◽  
Victor J. Hruby

1968 ◽  
Vol 65 ◽  
pp. 1587-1589 ◽  
Author(s):  
Bithika Ghosh ◽  
Sadhan Basu
Keyword(s):  

10.1002/jcc.2 ◽  
1996 ◽  
Vol 17 (16) ◽  
pp. 1804-1819 ◽  
Author(s):  
Attila Kov�cs ◽  
Istv�n Kolossv�ry ◽  
G�bor I. Csonka ◽  
Istv�n Hargittai

2017 ◽  
Vol 5 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Azaria Robiana ◽  
M. Yashin Nahar ◽  
Hamidah Harahap

Glycerin residue is waste oleochemical industry that still contain glycerin. To produce quality and maximum quantity of glycerin, then research the effect of pH acidification using phosphoric acid. Glycerin analysis includes the analysis of pH, Fatty Acid and Ester (FAE), and analysis of the levels of glycerin. The maximum yield obtained at pH acidification 2 is grading 91,60% glycerin and Fatty Acid and Ester (FAE) 3,63 meq/100 g. Glycerin obtained is used as a plasticizer in the manufacture of bioplastics. Manufacture of bioplastics using the method of pouring a solution with varying concentrations of starch banana weevil (5% w/v and 7% w/v), variations of the addition of glycerin (1 ml, 3 ml, 5 ml and 7 ml), and a variety of gelatinization temperature (60°C, 70°C, and 80°C). Analysis of bioplastics include FTIR testing, tensile strength that is supported by SEM analysis. The results obtained in the analysis of FTIR does not form a new cluster on bioplastics starch banana weevil, but only a shift in the recharge area only, it is due to the addition of O-H groups originating from water molecules that enter the polysaccharide through a mechanism gelatinitation that generates interaction hydrogen bonding strengthened. The maximum tensile strength of bioplastics produced at a concentration of starch 7% w/v, 1 ml glycerine and gelatinization temperature of 80°C is 3,430 MPa. While the tensile strength bioplastic decreased with increasing glycerin which can be shown from the results of SEM where there is a crack, indentations and lumps of starch insoluble.


1963 ◽  
Vol 119 (3-4) ◽  
pp. 252-256 ◽  
Author(s):  
Brahama D. Sharma ◽  
Richard E. Marsh ◽  
Jerry Donohue
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document