scholarly journals SAT0048 ANTI-FRACTALKINE MONOCLONAL ANTIBODY AMELIORATE JOINT DESTRUCTION AND SYNOVIUM THROUGH SUPPRESSION OF OSTEOCLAST PRECURSOR MIGRATION AND INDUCTION OF SYNOVIAL CELL DEATH IN COLLAGEN-INDUCED ARTHRITIS MODEL

Author(s):  
Naoto Ishii ◽  
Kana Hoshino-Negishi ◽  
Masayoshi Ohkuro ◽  
Tomoya Nakatani ◽  
Wataru Ikeda ◽  
...  
2013 ◽  
Vol 74 (1) ◽  
pp. 220-226 ◽  
Author(s):  
Emmanuel Coste ◽  
Iain R Greig ◽  
Patrick Mollat ◽  
Lorraine Rose ◽  
Mohini Gray ◽  
...  

IntroductionInflammatory joint diseases such as rheumatoid arthritis are associated with local bone erosions and systemic bone loss, mediated by increased osteoclastic activity. The receptor activator of nuclear factor (NF) κB ligand (RANKL) plays a key role in mediating inflammation-induced bone loss, whereas tumour necrosis factor (TNF) plays a central role in the inflammatory process. Here we tested whether a recently identified class of small molecule inhibitors of RANKL signalling (ABD compounds) also affect TNF signalling and whether these compounds inhibit inflammation in an animal model of rheumatoid arthritis.MethodsThe inhibitory effects of the ABD compounds on TNF-induced signalling were tested in mouse macrophage cultures by western blotting and in an NFκB luciferase-reporter cell line. The anti-inflammatory effects of the compounds were tested in the mouse collagen-induced arthritis model of rheumatoid arthritis.ResultsThe ABD compounds ABD328 and ABD345 both inhibited TNF-induced activation of the NFκB pathway and the extracellular signal-regulated kinase (ERK) and Jun kinase (JNK) mitogen activated protein kinases (MAPKs). When tested in the mouse collagen-induced arthritis model of rheumatoid arthritis, the compounds suppressed inflammatory arthritis, inhibited joint destruction and prevented systemic bone loss. Furthermore, one of the compounds (ABD328) showed oral activity.ConclusionsHere we describe a novel class of small molecule compounds that inhibit both RANKL- and TNF-induced NFκB and MAPK signalling in osteoclasts and macrophages, and inflammation and bone destruction in a mouse model of rheumatoid arthritis. These novel compounds therefore represent a promising new class of treatments for inflammatory diseases, such as rheumatoid arthritis.


2015 ◽  
Vol 33 (4) ◽  
pp. 1040-1049 ◽  
Author(s):  
Weirong Wang ◽  
Thomas S. McIntosh ◽  
Xiling Jiang ◽  
Rajitha Doddareddy ◽  
Elayne C. Dell ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 934.3-934
Author(s):  
M. Kim ◽  
Y. Choe ◽  
H. Lee ◽  
Y. H. Cheon ◽  
S. I. Lee

Background:Histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP) stimulates cancer progression and allergic responses. Increased expression of HRF/TCTP occurs in joints of rheumatoid arthritis (RA) patients, but the role of HRF/TCTP in RA remains undefinedObjectives:In this study, we explored the pathogenic significance of HRF/TCTP and evaluated therapeutic effects of HRF/TCTP blockade in RA.Methods:HRF/TCTP transgenic (TG) and knockdown (KD) mice with collagen-induced arthritis (CIA) were used to determine experimental phenotypes of RA. HRF/TCTP levels were measured in sera and joint fluids in patients with RA and compared to those with osteoarthritis, ankylosing spondylitis, Behcet disease, and healthy controls. HRF/TCTP expression was also assessed in synovium and fibroblast-like synoviocytes (FLS) obtained from RA or OA patients. Finally, we assessed effects of HRF/TCTP and dimerized HRF/TCTP binding peptide-2 (dTBP2), an inhibitor of HRF/TCTP, in RA-FLS and CIA mice.Results:Our clinical, radiological, histological, and biochemical analyses indicate that inflammatory responses and joint destruction were increased in HRF/TCTP TG mice, and decreased in KD mice compared to wild-type littermates. HRF/TCTP levels were higher in sera, synovial fluid, synovium, and FLS of patients with RA than in control groups. Serum levels of HRF/TCTP correlated well with disease activity in RA. Tumor-like aggressiveness of RA-FLS was exacerbated by HRF/TCTP stimulation and ameliorated by dTBP2 treatment. dTBP2 exerted protective and therapeutic effects in CIA mice, and had no detrimental effect in a murine tuberculosis model.Conclusion:Our results indicate that HRF/TCTP represents a novel biomarker and therapeutic target for diagnosis and treatment of RA.References:N/AAcknowledgments :National Research Foundation of KoreaKorea Health Industry Development InstituteDisclosure of Interests:None declared


2010 ◽  
Vol 31 (5) ◽  
pp. 595-603 ◽  
Author(s):  
Samjin Choi ◽  
Yeon-Ah Lee ◽  
Seung-Jae Hong ◽  
Gi-Ja Lee ◽  
Sung Wook Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document