Bloom’s syndrome with growth hormone deficiency: a rare association

2020 ◽  
Vol 13 (10) ◽  
pp. e235238
Author(s):  
Madhavi Verpula ◽  
Vijay Sheker Reddy Danda ◽  
Srinivas Rao Paidipally ◽  
Chaitanya Konda

We report a case of a 5-year-old boy presenting to us with short stature. He was born of consanguineous parentage and was small for gestational age. He had severe short stature, with height Z score of −6.2 SD Score, markedly delayed skeletal age, low level of insulin-like growth factor 1, unstimulated growth hormone and hypoplastic anterior pituitary gland on MRI. He was advised growth hormone (GH) replacement at 2 years of age, but he did not receive it . Later on, he developed photosensitive telangiectatic lesions over face and required multiple hospital admissions for recurrent systemic infections. Genetic analysis confirmed the diagnosis of Bloom’s syndrome. The present case report illustrates the need for high vigilance for conditions like Bloom’s syndrome in growth hormone deficiency (GHD), in whom GH treatment could potentially be harmful. Bloom’s syndrome with GHD is an exceedingly rare association.

2015 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Carlos TORI TORI ◽  
Carlos ROE B.

We present a case of Klinefelter’s syndrome and short stature due to partial growth hormone deficiency. His height was below the third percentile for age and his bone age lagged behind four years. Cases like this are generally due to the presence of a an isochromosome Xq or to an isolated partial or total deficiency of growth hormone, or to partial or panhypopituitarism. We wish de emphasize the rare association between Klinefelter syndrome and growth hormone deficiency.


Author(s):  
Nicholas Krasnow ◽  
Bradley Pogostin ◽  
James Haigney ◽  
Brittany Groh ◽  
Winston Weiler ◽  
...  

AbstractBackgroundPituitary cysts have been speculated to cause endocrinopathies. We sought to describe the prevalence and volumetry of pituitary cysts in patients with growth hormone deficiency (GHD) and idiopathic short stature (ISS).MethodsSix hundred and eighteen children evaluated for growth failure at the Division of Pediatric Endocrinology at New York Medical College between the years 2002 and 2012, who underwent GH stimulation testing and had a brain magnetic resonance imaging (MRI) prior to initiating GH treatment were randomly selected to be a part of this study. High resolution MRI was used to evaluate the pituitary gland for size and the presence of a cyst. Cyst prevalence, cyst volume and percentage of the gland occupied by the cyst (POGO) were documented.ResultsFifty-six patients had a cyst, giving an overall prevalence of 9.1%. The prevalence of cysts in GHD patients compared to ISS patients was not significant (13.5% vs. 5.7%, p=0.46). Mean cyst volume was greater in GHD patients than ISS patients (62.0 mm3vs. 29.4 mm3, p=0.01). POGO for GHD patients was significantly greater (p=0.003) than for ISS patients (15.3%±12.8 vs. 7.1%±8.0). Observers were blinded to patient groups.ConclusionsGHD patients had a significantly greater volume and POGO compared to ISS patients. This raises the question of whether cysts are implicated in the pathology of growth failure.


Author(s):  
Jordan Yardain Amar ◽  
Kimberly Borden ◽  
Elizabeth Watson ◽  
Talin Arslanian

Summary Isolated Growth Hormone Deficiency (IGHD) is a rare cause of short stature, treated with the standard regimen of subcutaneous synthetic growth hormone (GH). Patients typically achieve a maximum height velocity in the first year of treatment, which then tapers shortly after treatment is stopped. We report a case of a 9-year-old male who presented with short stature (<3rd percentile for age and race). Basal hormone levels showed undetectable serum IGF1. Skeletal wrist age was consistent with chronologic age. Cranial MRI revealed no masses or lesions. Provocative arginine-GH stimulation testing demonstrated a peak GH level of 1.4 ng/mL. Confirmatory genetic testing revealed a rare autosomal recessive single-nucleotide polymorphism (SNP) with mutational frequency of 2%. GH supplementation was started and pursued for 2 years, producing dramatically increased height velocity. This velocity persisted linearly through adolescence, several years after treatment had been discontinued. Final adult height was >95th percentile for age and race. In conclusion, this is a case of primary hypopituitarism with differential diagnosis of IGHD vs Idiopathic Short Stature vs Constitutional Growth Delay. This case supports two objectives: Firstly, it highlights the importance of confirmatory genetic testing in patients with suspected, though diagnostically uncertain, IGHD. Secondly, it demonstrates a novel secondary growth pattern with implications for better understanding the tremendous variability of GH treatment response. Learning points: GHD is a common cause of growth retardation, and IGHD is a specific subtype of GHD in which patients present solely with short stature. The standard treatment for IGHD is subcutaneous synthetic GH until mid-parental height is reached, with peak height velocity attained in the 1st year of treatment in the vast majority of patients. Genetic testing should be strongly considered in cases of diagnostic uncertainty prior to initiating treatment. Future investigations of GH treatment response that stratify by gene and specific mutation will help guide treatment decisions. Response to treatment in patients with IGHD is variable, with some patients demonstrating little to no response, while others are ‘super-responders.’


PEDIATRICS ◽  
1998 ◽  
Vol 102 (Supplement_3) ◽  
pp. 524-526
Author(s):  
Raymond L. Hintz

The use of auxologic measurements in the diagnosis of short stature in children has a long history in pediatric endocrinology, and they have even been used as the primary criteria in selecting children for growth hormone (GH) therapy. Certainly, an abnormality in the control of growth is more likely in short children than in children of normal stature. However, most studies have shown little or no value of auxologic criteria in differentiating short children who have classic growth hormone deficiency (GHD) from short children who do not. In National Cooperative Growth Study Substudy VI, in more than 6000 children being assessed for short stature, the overall mean height SD score was −2.5 ± 1.1 and the body mass index standard deviation score was −0.5 ± 1.4. However, there were no significant differences in these measures between the patients who were found subsequently to have GHD and those who were not. There also was no consistent difference in the growth rates between the patients with classic GHD and those short children without a diagnosis of GHD. This probably reflects the fact that we are dealing with a selected population of children who were referred for short stature and are further selecting those who are the shortest for additional investigation. Growth factor measurements have been somewhat more useful in selecting patients with GHD and have been proposed as primary diagnostic criteria. However, in National Cooperative Growth Study Substudy VI, only small differences in the levels of insulin-like growth factor I and insulin-like growth factor binding protein 3 were seen between the patients who were selected for GH treatment and those who were not. Many studies indicate that the primary value of growth factor measurements is to exclude patients who are unlikely to have GHD or to identify those patients in whom an expedited work-up should be performed. The diagnosis of GHD remains difficult and must be based on all of the data possible and the best judgment of an experienced clinician. Even under ideal circumstances, errors of both overdiagnosis and underdiagnosis of GHD still are likely.


Author(s):  
Marion Kessler ◽  
Michael Tenner ◽  
Michael Frey ◽  
Richard Noto

AbstractBackground:The objective of the study was to describe the pituitary volume (PV) in pediatric patients with isolated growth hormone deficiency (IGHD), idiopathic short stature (ISS) and normal controls.Methods:Sixty-nine patients (57 male, 12 female), with a mean age of 11.9 (±2.0), were determined to have IGHD. ISS was identified in 29 patients (20 male, 9 female), with a mean age of 12.7 (±3.7). Sixty-six controls (28 female, 38 male), mean age 9.8 (±4.7) were also included. Three-dimensional (3D) magnetic resonance images with contrast were obtained to accurately measure PV.Results:There was a significant difference in the mean PV among the three groups. The IGHD patients had a mean PV 230.8 (±89.6), for ISS patients it was 286.8 (±108.2) and for controls it was 343.7 (±145.9) (p<0.001). There was a normal increase in PV with age in the ISS patients and controls, but a minimal increase in the IGHD patients.Conclusions:Those patients with isolated GHD have the greatest reduction in PV compared to controls and the patients with ISS fall in between. We speculate that a possible cause for the slowed growth in some ISS patients might be related to diminished chronic secretion of growth hormone over time, albeit having adequate pituitary reserves to respond acutely to GH stimulation. Thus, what was called neurosecretory GHD in the past, might, in some patients, be relative pituitary hypoplasia and resultant diminished growth hormone secretion. Thus, PV determinations by magnetic resonance imaging (MRI) could assist in the diagnostic evaluation of the slowly growing child.


Sign in / Sign up

Export Citation Format

Share Document