FIP1L1-PDGFRA fusion gene in a patient with asthma and rhinitis

2021 ◽  
Vol 14 (5) ◽  
pp. e242096
Author(s):  
Megumi Sato ◽  
Ruri Kato ◽  
Ryu Jokoji ◽  
Isao Tachibana

Eosinophilia in asthma or rhinitis is usually considered to be reactive to the allergic diseases. We report a 33-year-old man with asthma and rhinitis, and progressive hypereosinophilia. Fluorescence in situ hybridization analysis detected interstitial chromosomal deletion at 4q12 in cells of the bone marrow. The patient was diagnosed as myeloproliferative neoplasm with a FIP1L1-PDGFRA fusion gene, and successfully treated with the tyrosine kinase inhibitor, imatinib. Clonal expansion of eosinophils due to the FIP1L1-PDGFRA fusion gene could underlie refractory mechanisms in patients with bronchial asthma or allergic rhinitis.

2000 ◽  
Vol 18 (9) ◽  
pp. 1831-1836 ◽  
Author(s):  
Chy-Myong Seong ◽  
Sergio Giralt ◽  
Hagop Kantarjian ◽  
Jingping Xu ◽  
Jolynn Swantkowski ◽  
...  

PURPOSE: Standard G-band cytogenetic analysis (CG) provides information on approximately 25 metaphases for monitoring the presence of Philadelphia chromosome positive (Ph+) cells in chronic myelogenous leukemia (CML) patients, making the detection of a low frequency of Ph+ cells problematic. The purpose of this study was to improve the detection of a low frequency of Ph+ cells. PATIENTS AND METHODS: We combined fluorescence in situ hybridization (FISH) with long-term colcemid exposure, capturing several hundred metaphases in bone marrow cultures (hypermetaphase FISH [HMF]). Using probes that identify Ph+ cells, HMF was compared with CG analysis in the follow-up evaluations of 51 patients with CML at various time points after allogeneic bone marrow transplant (BMT). RESULTS: Thirty-five patients never showed the presence of Ph+ cells by either method. In four patients, high frequencies of Ph+ cells were detected by both methods. In the remaining 12 patients, Ph+ cells were detected by HMF at time points after BMT when they were not detected by CG. In seven of the 12 patients, low but statistically significant frequencies of Ph+ cells (0.37% to 5.20%) were detected 3 months or later after BMT, and when no intervention was initiated, all seven patients later relapsed. Based on those data, an eighth patient with mixed chimerism and a similar HMF-detected Ph+ frequency (1.8% at 27 months after BMT) was reinfused with donor lymphocytes and achieved remission with 0% Ph+ cells studied by HMF (up to 50 months after BMT). Ph+ cells detected by HMF but not by CG less than 3 months after BMT disappeared on later examination in two of four patients. After detection of Ph+ cells by HMF only, the median time to cytogenetic progression (detection of Ph+ cells by CG) was 101 days. CONCLUSION: The results demonstrate the ability of HMF to detect low but clinically relevant levels of leukemic cells not detected by CG in transplant patients. The data indicate that HMF can detect low levels of Ph+ cells before standard cytogenetics at a time that may be useful in monitoring disease status and planning clinical interventions.


Blood ◽  
1990 ◽  
Vol 76 (9) ◽  
pp. 1812-1818 ◽  
Author(s):  
CM Morris ◽  
N Heisterkamp ◽  
MA Kennedy ◽  
PH Fitzgerald ◽  
J Groffen

Abstract Leukemic cells from a patient with Ph-negative chronic myeloid leukemia (CML) had a normal karyotype. M-BCR was rearranged and chromosome in situ hybridization showed an ABL insertion between 5′ and 3′ M-BCR on an apparently normal chromosome 22. The association of 5′ BCR and 3′ ABL at the 5′ junction of the chromosome 9 insert was typical of that found for the BCR-ABL fusion gene in other patients with the standard t(9;22) and CML. With an M-bcr-3′ probe, we cloned and characterized a 3′ junction fragment. Field inversion gel electrophoresis and chromosome in situ hybridization studies using a probe isolated from genomic DNA 5′ of the junction showed that 3′ M-BCR was joined to a region of chromosome 9q34 rich in repetitive sequences and lying some distance 3′ of ABL. The chromosome 9 insert was at least 329 kilobases long and included 3′ ABL and a larger portion of chromosome 9q34. Our results allowed us to exclude transposon- or retroviral-mediated insertion of ABL into chromosome 22. Instead, we favored a two- translocation model in which a second translocation reconstituted a standard t(9;22)(q34;q11) but left the chromosome 9 insert, including 3′ ABL, in chromosome 22.


1989 ◽  
Vol 92 (5) ◽  
pp. 589-594 ◽  
Author(s):  
Nora C. J. Sun ◽  
Paul Shapshak ◽  
Neil A. Lachant ◽  
M-Y. Hsu ◽  
Lance Sieger ◽  
...  

Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 495-499 ◽  
Author(s):  
L Zhao ◽  
KS Chang ◽  
EH Estey ◽  
K Hayes ◽  
AB Deisseroth ◽  
...  

Abstract The translocation between chromosomes 15 and 17, t(15;17)(q22–24;q11– 21), is present in the bone marrow cells of most patients with acute promyelocytic leukemia (APL). Although conventional cytogenetic methods are useful for diagnosing this disease, difficulties are experienced in detecting residual disease among those patients who have achieved remission. In this study, we used the fluorescence in situ hybridization (FISH) method to attempt to detect residual leukemic cells in 10 APL patients in clinical remission. The duration of remission ranged from 2 to 93 months at the time of study. Multiple bone marrow samples were analyzed by FISH in most patients. In 6 patients, no cell with t(15;17) was found. These patients remain in complete remission at present (approximately 25 to 33 months since first studied by FISH). In 4 patients, low frequencies of cells with t(15;17) were observed in at least one bone marrow sample examined. All of these patients relapsed within 1 to 14 months. No cell with t(15;17) was identified by the conventional G-banding method in any sample. The FISH results correlated well with that of a two-round nested reverse transcription polymerase chain reaction assay that was performed on the same samples. Thus, our study suggests that FISH is potentially a useful tool for detecting residual APL cells and for identifying patients at high risk of relapse.


Sign in / Sign up

Export Citation Format

Share Document