Optical coherence tomography angiography for the assessment of choroidal vasculature in high myopia

2019 ◽  
Vol 104 (7) ◽  
pp. 917-923 ◽  
Author(s):  
Kavya Devarajan ◽  
Ralene Sim ◽  
Jacqueline Chua ◽  
Chee Wai Wong ◽  
Saiko Matsumura ◽  
...  

AimsTo assess specific layers of the choroid in highly myopic young adults and to examine their associations with levels of myopia.MethodsWe recruited 51 young myopes (n=91 eyes) from the Singapore Cohort of Risk Factors for Myopia cohort. We performed standardised optical coherence tomography (OCT) and OCT angiography imaging and developed a novel segmentation technique assessing choroidal layers’ thickness (overall choroidal thickness (CT), medium-vessel choroidal layer (MVCL) thickness, large-vessel choroidal layer (LVCL)) and vasculature (choroidal vessel density (%), choroidal branch area (CBA, %) and mean choroidal vessel width (MCVW, mm)).ResultsWe found that eyes with extreme myopia (EM) had thinner vascular layers compared with high myopia (HM), that is, LVCL (36.0±1.5 vs 39.2±1.2 µm, p=0.002) and MVCL (185.5±5.7 vs 198.2±4.6 µm, p=0.014). Overall CT was thinnest in the nasal and inferior quadrants in EM (nasal: 157.1±9.6 vs 187.2±8.3 µm, p<0.001; superior: 236.6±11.1 vs 257.0±9.5 µm, p=0.02; temporal: 228.0±10.6 vs 254.3±8.8 µm, p=0.012; and inferior quadrant: 198.7±10.0 vs 239.8±8.3 µm, p=<0.001) when compared with HM. We also observed significantly more vessel branching in eyes with EM as compared with eyes with HM (CBA, 10.2%±0.7% vs 9.95%±0.8%, p=0.018).ConclusionsThe novel segmentation technique and introduced choroidal parameters may serve as new biomarkers to study disease conditions in myopia.

2016 ◽  
Vol 25 (5) ◽  
pp. e526-e530 ◽  
Author(s):  
Harsha L. Rao ◽  
Addepalli U. Kumar ◽  
Sampath R. Bonala ◽  
Kadam Yogesh ◽  
Bodduluri Lakshmi

2020 ◽  
pp. bjophthalmol-2020-317825
Author(s):  
Yonghao Li ◽  
Weibo Feng ◽  
Xiujuan Zhao ◽  
Bingqian Liu ◽  
Yan Zhang ◽  
...  

Background/aimsTo apply deep learning technology to develop an artificial intelligence (AI) system that can identify vision-threatening conditions in high myopia patients based on optical coherence tomography (OCT) macular images.MethodsIn this cross-sectional, prospective study, a total of 5505 qualified OCT macular images obtained from 1048 high myopia patients admitted to Zhongshan Ophthalmic Centre (ZOC) from 2012 to 2017 were selected for the development of the AI system. The independent test dataset included 412 images obtained from 91 high myopia patients recruited at ZOC from January 2019 to May 2019. We adopted the InceptionResnetV2 architecture to train four independent convolutional neural network (CNN) models to identify the following four vision-threatening conditions in high myopia: retinoschisis, macular hole, retinal detachment and pathological myopic choroidal neovascularisation. Focal Loss was used to address class imbalance, and optimal operating thresholds were determined according to the Youden Index.ResultsIn the independent test dataset, the areas under the receiver operating characteristic curves were high for all conditions (0.961 to 0.999). Our AI system achieved sensitivities equal to or even better than those of retina specialists as well as high specificities (greater than 90%). Moreover, our AI system provided a transparent and interpretable diagnosis with heatmaps.ConclusionsWe used OCT macular images for the development of CNN models to identify vision-threatening conditions in high myopia patients. Our models achieved reliable sensitivities and high specificities, comparable to those of retina specialists and may be applied for large-scale high myopia screening and patient follow-up.


2021 ◽  
pp. 153537022110285
Author(s):  
Hao Zhou ◽  
Tommaso Bacci ◽  
K Bailey Freund ◽  
Ruikang K Wang

The choroid provides nutritional support for the retinal pigment epithelium and photoreceptors. Choroidal dysfunction plays a major role in several of the most important causes of vision loss including age-related macular degeneration, myopic degeneration, and pachychoroid diseases such as central serous chorioretinopathy and polypoidal choroidal vasculopathy. We describe an imaging technique using depth-resolved swept-source optical coherence tomography (SS-OCT) that provides full-thickness three-dimensional (3D) visualization of choroidal anatomy including topographical features of individual vessels. Enrolled subjects with different clinical manifestations within the pachychoroid disease spectrum underwent 15 mm × 9 mm volume scans centered on the fovea. A fully automated method segmented the choroidal vessels using their hyporeflective lumens. Binarized choroidal vessels were rendered in a 3D viewer as a vascular network within a choroidal slab. The network of choroidal vessels was color depth-encoded with a reference to the Bruch’s membrane segmentation. Topographical features of the choroidal vasculature were characterized and compared with choroidal imaging obtained with indocyanine green angiography (ICGA) from the same subject. The en face SS-OCT projections of the larger choroid vessels closely resembled to that obtained with ICGA, with the automated SS-OCT approach proving additional depth-encoded 3D information. In 16 eyes with pachychoroid disease, the SS-OCT approach added clinically relevant structural details, including choroidal thickness and vessel depth, which the ICGA studies could not provide. Our technique appears to advance the in vivo visualization of the full-thickness choroid, successfully reveals the topographical features of choroidal vasculature, and shows potential for further quantitative analysis when compared with other choroidal imaging techniques. This improved visualization of choroidal vasculature and its 3D structure should provide an insight into choroid-related disease mechanisms as well as their responses to treatment.


Author(s):  
Mael Lever ◽  
Christian Halfwassen ◽  
Jan Darius Unterlauft ◽  
Nikolaos E. Bechrakis ◽  
Anke Manthey ◽  
...  

Abstract Purpose A central diagnostic tool in adult glaucoma is the peripapillary retinal nerve fibre layer (pRNFL) thickness. It can be assessed by scanning laser polarimetry (SLP) or optical coherence tomography (OCT). However, studies investigating the relevance of pRNFL measurements in children are rare. This study aims to compare the glaucoma diagnosing ability of SLP and OCT pRNFL thickness measurements in a paediatric population. Methods This retrospective study included 105 children (glaucoma: 22 (21.0%); healthy glaucoma suspects: 83 (79.0%)) aged 4–18 years, examined with SLP (GDxPro/ECC, Carl Zeiss Meditec) and spectral-domain OCT (SPECTRALIS®, Heidelberg Engineering). The thickness of pRNFL sectors was compared between diseased and healthy participants. Areas under the receiver-operating characteristic curves (AUC) and logistic regression results were used to compare the glaucoma discriminative capacity between SLP and OCT measurements. Results Using OCT, pRNFL thickness was decreased in the superior, nasal, and inferior quadrants of glaucoma patients compared to healthy controls (P < 0.001, each). With SLP, such a difference was only observed in the inferior quadrant (P = 0.011). A correlation between glaucoma diagnosis and OCT-measured pRNFL thickness was found in all quadrants (P < 0.001) other than the temporal. With SLP, a correlation was found for the total average thickness (P = 0.037) and inferior quadrant (P = 0.0019). Finally, the AUCs of OCT measurements were markedly higher than those of SLP (e.g., inferior quadrant: OCT 0.83, SLP 0.68). Conclusion pRNFL thickness measurements using both OCT and SLP, correlate notably with the presence of glaucoma. In general, the diagnostic performance of pRNFL thickness measurements seems higher for OCT than for SLP. Thus, pRNFL thickness measurements could provide important information, complementing conventional clinical and functional parameters in the diagnostic process of paediatric glaucoma.


2015 ◽  
Vol 08 (04) ◽  
pp. 1550012 ◽  
Author(s):  
Qinqin Zhang ◽  
Maureen Neitz ◽  
Jay Neitz ◽  
Ruikang K. Wang

Purpose: To provide a geographical map of choroidal thickness (CT) around the macular region among subjects with low, moderate and high myopia. Methods: 20 myopic subjects (n = 40 eyes) without other identified pathologies participated in this study: 20 eyes of ≤ 3 diopters (D) (low myopic), 10 eyes between -3 and -6D (moderate myopic), and 10 eyes of ≥ 6D (high myopic). The mean age of subjects was 30.2 years (± 7.6 years; range, 24 to 46 years). A 1050 nm spectral-domain optical coherence tomography (SD-OCT) system, operating at 120 kHz imaging rate, was used in this study to simultaneously capture 3D anatomical images of the choroid and measure intraocular length (IOL) in the subject. The 3D OCT images of the choroid were segmented into superior, inferior, nasal and temporal quadrants, from which the CT was measured, representing radial distance between the outer retinal pigment epithelium (RPE) layer and inner scleral border. Measurements were made within concentric regions centered at fovea centralis, extended to 5 mm away from fovea at 1 mm intervals in the nasal and temporal directions. The measured IOL was the distance from the anterior cornea surface to the RPE in alignment along the optical axis of the eye. Statistical analysis was performed to evaluate CT at each geographic region and observe the relationship between CT and the degree of myopia. Results: For low myopic eyes, the IOL was measured at 24.619 ± 0.016 mm. The CT (273.85 ± 49.01 μm) was greatest under fovea as is in the case of healthy eyes. Peripheral to the fovea, the mean CT decreased rapidly along the nasal direction, reaching a minimum of 180.65 ± 58.25μm at 5 mm away from the fovea. There was less of a change in thickness from the fovea in the temporal direction reaching a minimum of 234.25 ± 42.27 μm. In contrast to the low myopic eyes, for moderate and high myopic eyes, CTs were thickest in temporal region (where CT = 194.94 ± 27.28 and 163 ± 34.89 μm, respectively). Like the low myopic eyes, moderate and high myopic eyes had thinnest CTs in the nasal region (where CT = 100.84 ± 16.75 and 86.64 ± 42.6μm, respectively). High myopic eyes had the longest mean IOL (25.983 ± 0.021mm), while the IOL of moderate myopia was 25.413 ± 0.022 mm (**p < 0.001). The CT reduction rate was calculated at 31.28 μm/D (diopter) from low to moderate myopia, whilst it is 13.49 μm/D from moderate to high myopia. The similar tendency was found for the IOL reduction rate in our study: 0.265 mm/D from low to moderate myopia, and 0.137 mm/D from moderate to high myopia. Conclusion: The CT decreases and the IOL increases gradually with the increase of myopic condition. The current results support the theory that choroidal abnormality may play an important role in the pathogenesis of myopic degeneration.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 658
Author(s):  
Federico Corvi ◽  
Federico Zicarelli ◽  
Matteo Airaldi ◽  
Salvatore Parrulli ◽  
Mariano Cozzi ◽  
...  

Background: To compare four different optical coherence tomography (OCT) devices for visualization of retinal and subretinal layers in highly myopic eyes. Methods: In this prospective, observational, cross-sectional study, consecutive patients with high myopia and control subjects were imaged by four OCT devices: Spectralis OCT2, PlexElite 2.0 100 kHz, PlexElite 2.0 200 kHz and the Canon Xephilio OCT-S1. The acquisition protocol for comparison consisted of single vertical and horizontal line scans centered on the fovea. Comparison between the devices in the extent of visible retina, presence of conjugate image or mirror artifacts, visibility of the sclerochoroidal interface and retrobulbar tissue. Results: 30 eyes with high myopia and 30 control subjects were analyzed. The visualized RPE length was significantly different between the OCT devices with Xephilio OCT-S1 imaging the largest extent (p < 0.0001). The proportion of eyes with conjugate image artifact was significantly higher with the Spectralis OCT (p < 0.0001), and lower with the PlexElite 200 kHz (p < 0.0001). No difference in visibility of the sclerochoroidal interface was noted among instruments. The retrobulbar tissue was visible in a higher proportion of eyes using swept-source PlexElite 100 kHz and 200 kHz (p < 0.007) compared to the other devices. Conclusions: In highly myopic eyes, the four OCT devices demonstrated significant differences in the extent of the retina imaged, in the prevalence of conjugate image artifact, and in the visualization of the retrobulbar tissue.


2016 ◽  
Vol 57 (1) ◽  
pp. 137 ◽  
Author(s):  
Tomoko Asai ◽  
Yasushi Ikuno ◽  
Masahiro Akiba ◽  
Tsutomu Kikawa ◽  
Shinichi Usui ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Zheng Zhang ◽  
Yue Qi ◽  
Wenbin Wei ◽  
Zi-Bing Jin ◽  
Wen Wang ◽  
...  

Purpose: This work aimed to study the effect of posterior scleral reinforcement (PSR) on choroidal thickness (CT) and blood flow.Methods: This study included 25 eyes of 24 patients with high myopia ( ≤ -6.0 dioptres or axial length ≥ 26.0 mm) who underwent PSR surgery. All patients completed the 1-month follow-up visit. Myopic macular degeneration (MMD) was graded according to the International Meta-Analysis for Pathologic Myopia (META-PM) classification based on color fundus photographs. Swept-source optical coherence tomography angiography (SSOCTA) was performed to investigate CT, choroidal perfusion area (CPA), and choriocapillaris perfusion area (CCPA) change following PSR surgery.Results: The distribution of MMD categories was 9 (36.0%) in category 1, 10 (40.0%) in category 2, and 6 (24.0%) in category 3 or 4. MMD severity was strongly correlated with CT (all P &lt; 0.01) and CPA (all P &lt; 0.04). Postoperative CT at each sector increased significantly at 1 week's follow-up, compared to preoperative measures (all P &lt; 0.05). Postoperative CPA at subfoveal, superior, inferior, and nasal sectors also increased significantly 1 week after PSR surgery (all P &lt; 0.05). Moreover, the increased CT, CPA, and CCPA remain after PSR surgery at 1 month's follow-up, but the difference was not statistically significant.Conclusions: We demonstrated that the CT and choroidal blood flow increased significantly in patients with high myopia who underwent PSR surgery in a short period of time. In addition, the CT and CPA were independently associated with MMD. However, whether the transient improvement of the choroidal circulation could prevent long-term progression of high myopia warrants further study in the future.


Sign in / Sign up

Export Citation Format

Share Document