scholarly journals P-43 Titin genotype is associated with skeletal muscle fascicle length in recreationally active men and running performance in habitually trained marathon runners

2016 ◽  
Vol 50 (Suppl 1) ◽  
pp. A55-A56
Author(s):  
Georgina K Stebbings ◽  
Alun G Williams ◽  
Adam J Herbert ◽  
Sarah J Lockey ◽  
Shane M Heffernan ◽  
...  
2016 ◽  
Vol 4 (24) ◽  
pp. e13012 ◽  
Author(s):  
Jos Oudeman ◽  
Valentina Mazzoli ◽  
Marco A. Marra ◽  
Klaas Nicolay ◽  
Mario Maas ◽  
...  

2004 ◽  
Vol 96 (3) ◽  
pp. 885-892 ◽  
Author(s):  
N. D. Reeves ◽  
M. V. Narici ◽  
C. N. Maganaris

This study assessed muscle-specific force in vivo following strength training in old age. Subjects were assigned to training ( n = 9, age 74.3 ± 3.5 yr; mean ± SD) and control ( n = 9, age 67.1 ± 2 yr) groups. Leg-extension and leg-press exercises (2 sets of 10 repetitions at 80% of the 5 repetition maximum) were performed three times/wk for 14 wk. Vastus lateralis (VL) muscle fascicle force was calculated from maximal isometric voluntary knee extensor torque with superimposed stimuli, accounting for the patella tendon moment arm length, ultrasound-based measurements of muscle architecture, and antagonist cocontraction estimated from electromyographic activity. Physiological cross-sectional area (PCSA) was calculated from the ratio of muscle volume to fascicle length. Specific force was calculated by dividing fascicle force by PCSA. Fascicle force increased by 11%, from 847.9 ± 365.3 N before to 939.3 ± 347.8 N after training ( P < 0.05). Due to a relatively greater increase in fascicle length (11%) than muscle volume (6%), PCSA remained unchanged (pretraining: 30.4 ± 8.9 cm2; posttraining: 29.1 ± 8.4 cm2; P > 0.05). Activation capacity and VL muscle root mean square electromyographic activity increased by 5 and 40%, respectively, after training ( P < 0.05), indicating increased agonist neural drive, whereas antagonist cocontraction remained unchanged ( P > 0.05). The VL muscle-specific force increased by 19%, from 27 ± 6.3 N/cm2 before to 32.1 ± 7.4 N/cm2 after training ( P < 0.01), highlighting the effectiveness of strength training for increasing the intrinsic force-producing capacity of skeletal muscle in old age.


2021 ◽  
pp. 79-91
Author(s):  
Yongjin Zhou ◽  
Yong-Ping Zheng

1999 ◽  
Vol 31 (Supplement) ◽  
pp. S329
Author(s):  
T. Abe ◽  
K. Kumagai ◽  
W. F. Brechue

2011 ◽  
Vol 8 (3) ◽  
pp. 386-389 ◽  
Author(s):  
Henry C. Astley ◽  
Thomas J. Roberts

Anuran jumping is one of the most powerful accelerations in vertebrate locomotion. Several species are hypothesized to use a catapult-like mechanism to store and rapidly release elastic energy, producing power outputs far beyond the capability of muscle. Most evidence for this mechanism comes from measurements of whole-body power output; the decoupling of joint motion and muscle shortening expected in a catapult-like mechanism has not been demonstrated. We used high-speed marker-based biplanar X-ray cinefluoroscopy to quantify plantaris muscle fascicle strain and ankle joint motion in frogs in order to test for two hallmarks of a catapult mechanism: (i) shortening of fascicles prior to joint movement (during tendon stretch), and (ii) rapid joint movement during the jump without rapid muscle-shortening (during tendon recoil). During all jumps, muscle fascicles shortened by an average of 7.8 per cent (54% of total strain) prior to joint movement, stretching the tendon. The subsequent period of initial joint movement and high joint angular acceleration occurred with minimal muscle fascicle length change, consistent with the recoil of the elastic tendon. These data support the plantaris longus tendon as a site of elastic energy storage during frog jumping, and demonstrate that catapult mechanisms may be employed even in sub-maximal jumps.


2001 ◽  
Vol 20 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Takashi Abe ◽  
Senshi Fukashiro ◽  
Yasuhiro Harada ◽  
Kazuhisa Kawamoto

2015 ◽  
Vol 282 (1819) ◽  
pp. 20151908 ◽  
Author(s):  
François Hug ◽  
Clément Goupille ◽  
Daniel Baum ◽  
Brent J. Raiteri ◽  
Paul W. Hodges ◽  
...  

The force produced by a muscle depends on both the neural drive it receives and several biomechanical factors. When multiple muscles act on a single joint, the nature of the relationship between the neural drive and force-generating capacity of the synergistic muscles is largely unknown. This study aimed to determine the relationship between the ratio of neural drive and the ratio of muscle force-generating capacity between two synergist muscles (vastus lateralis (VL) and vastus medialis (VM)) in humans. Twenty-one participants performed isometric knee extensions at 20 and 50% of maximal voluntary contractions (MVC). Myoelectric activity (surface electromyography (EMG)) provided an index of neural drive. Physiological cross-sectional area (PCSA) was estimated from measurements of muscle volume (magnetic resonance imaging) and muscle fascicle length (three-dimensional ultrasound imaging) to represent the muscles' force-generating capacities. Neither PCSA nor neural drive was balanced between VL and VM. There was a large ( r = 0.68) and moderate ( r = 0.43) correlation between the ratio of VL/VM EMG amplitude and the ratio of VL/VM PCSA at 20 and 50% of MVC, respectively. This study provides evidence that neural drive is biased by muscle force-generating capacity, the greater the force-generating capacity of VL compared with VM, the stronger bias of drive to the VL.


2019 ◽  
Vol 37 (21) ◽  
pp. 2452-2458
Author(s):  
Fearghal P. Behan ◽  
Rachael Moody ◽  
Tejal Sarika Patel ◽  
Edward Lattimore ◽  
Thomas M. Maden-Wilkinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document