scholarly journals Corneal confocal microscopy compared with quantitative sensory testing and nerve conduction for diagnosing and stratifying the severity of diabetic peripheral neuropathy

2020 ◽  
Vol 8 (2) ◽  
pp. e001801
Author(s):  
Maryam Ferdousi ◽  
Alise Kalteniece ◽  
Shazli Azmi ◽  
Ioannis N Petropoulos ◽  
Anne Worthington ◽  
...  

IntroductionDiabetic neuropathy can be diagnosed and assessed using a number of techniques including corneal confocal microscopy (CCM).Research design and methodsWe have undertaken quantitative sensory testing, nerve conduction studies and CCM in 143 patients with type 1 and type 2 diabetes without neuropathy (n=51), mild neuropathy (n=47) and moderate to severe neuropathy (n=45) and age-matched controls (n=30).ResultsVibration perception threshold (p<0.0001), warm perception threshold (WPT) (p<0.001), sural nerve conduction velocity (SNCV) (p<0.001), corneal nerve fiber density (CNFD) (p<0.0001), corneal nerve branch density (CNBD) (p<0.0001), corneal nerve fiber length (CNFL) (p=0.002), inferior whorl length (IWL) (p=0.0001) and average nerve fiber length (ANFL) (p=0.0001) showed a progressive abnormality with increasing severity of diabetic neuropathy. Receiver operating characteristic curve analysis for the diagnosis of diabetic neuropathy showed comparable performance in relation to the area under the curve (AUC) but differing sensitivities and specificities for vibration perception threshold (AUC 0.79, sensitivity 55%, specificity 90%), WPT (AUC 0.67, sensitivity 50%, specificity 76%), cold perception threshold (AUC 0.64, sensitivity 80%, specificity 47%), SNCV (AUC 0.70, sensitivity 76%, specificity 54%), CNFD (AUC 0.71, sensitivity 58%, specificity 83%), CNBD (AUC 0.70, sensitivity 69%, specificity 65%), CNFL (AUC 0.68, sensitivity 64%, specificity 67%), IWL (AUC 0.72, sensitivity 70%, specificity 65%) and ANFL (AUC 0.72, sensitivity 71%, specificity 66%).ConclusionThis study shows that CCM identifies early and progressive corneal nerve loss at the inferior whorl and central cornea and has comparable utility with quantitative sensory testing and nerve conduction in the diagnosis of diabetic neuropathy.

2006 ◽  
Vol 34 (2) ◽  
pp. 214-224 ◽  
Author(s):  
Shawn J. Bird ◽  
Mark J. Brown ◽  
Cathie Spino ◽  
Sharon Watling ◽  
Howard L. Foyt

2020 ◽  
Author(s):  
Megan E. McCarron ◽  
Rachel L. Weinberg ◽  
Jessica M. Izzi ◽  
Suzanne E. Queen ◽  
Stuti L. Misra ◽  
...  

AbstractPurposeTo characterize corneal subbasal nerve plexus morphologic features using in vivo corneal confocal microscopy (IVCM) in normal and SIV-infected macaques and to implement automated assessments using novel deep learning-based methods customized for macaque studies.MethodsIn vivo corneal confocal microscopy images were collected from both male and female age-matched specific-pathogen free rhesus and pigtailed macaques housed at the Johns Hopkins University breeding colony using the Heidelberg HRTIII with Rostock Corneal Module. We also obtained repeat IVCM images of 12 SIV-infected animals including pre-infection and 10 day post-SIV infection time-points. All IVCM images were analyzed using a novel deep convolutional neural network architecture developed specifically for macaque studies.ResultsDeep learning-based segmentation of subbasal nerves in IVCM images from macaques demonstrated that corneal nerve fiber length (CNFL) and fractal dimension measurements did not differ between species, but pigtailed macaques had significantly higher baseline corneal nerve fiber tortuosity than rhesus macaques (P = 0.005). Neither sex nor age of macaques was associated with differences in any of the assessed corneal subbasal nerve parameters. In the SIV/macaque model of HIV, acute SIV infection induced significant decreases in both corneal nerve fiber length and fractal dimension (P= 0.01 and P= 0.008 respectively).ConclusionsThe combination of IVCM and objective, robust, and rapid deep-learning analysis serves as a powerful noninvasive research and clinical tool to track sensory nerve damage, enabling early detection of neuropathy. Adapting the deep-learning analyses to human corneal nerve assessments will refine our ability to predict and monitor damage to small sensory nerve fibers in a number of clinical settings including HIV, multiple sclerosis, Parkinson’s disease, diabetes, and chemotherapeutic neurotoxicity.


2017 ◽  
Vol 31 (6) ◽  
pp. 1066-1073 ◽  
Author(s):  
Daniel Scarr ◽  
Leif E. Lovblom ◽  
Ilia Ostrovski ◽  
Dylan Kelly ◽  
Tong Wu ◽  
...  

2016 ◽  
Vol 231 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Janine Leckelt ◽  
Pedro Guimarães ◽  
Annett Kott ◽  
Alfredo Ruggeri ◽  
Oliver Stachs ◽  
...  

Small fiber neuropathy is one of the most common and painful long-term complications of diabetes mellitus. Examination of the sub-basal corneal nerve plexus is a promising surrogate marker of diabetic neuropathy. To investigate the efficacy, reliability and reproducibility of in vivo corneal confocal microscopy (IVCCM), we used thy1-YFP mice, which express yellow fluorescence protein (YFP) in nerve fibers. 4 weeks after multiple low-dose injections of streptozotocin, thy1-YFP mice showed manifest diabetes. Subsequent application of insulin-releasing pellets for 8 weeks resulted in a significant reduction of blood glucose concentration and HbA1c, a significant increase in body weight and no further increase in advanced glycation end products (AGEs). IVCCM, carried out regularly over 12 weeks and analyzed both manually and automatically, revealed a significant loss of corneal nerve fiber length (CNFL) during diabetes manifestation and significant recovery after insulin therapy. Ex vivo analyses of CNFL by YFP-based microscopy confirmed the IVCCM results (with high sensitivity between manual and automated approaches) but demonstrated that the changes were restricted to the central cornea. Peripheral areas, not accessible by IVCCM in mice, remained virtually unaffected. Because parallel assessment of intraepidermal nerve fiber density revealed no changes, we conclude that IVCCM robustly captures early signs of diabetic neuropathy.


2021 ◽  
Vol 2 ◽  
Author(s):  
Ioannis N. Petropoulos ◽  
Gulfidan Bitirgen ◽  
Maryam Ferdousi ◽  
Alise Kalteniece ◽  
Shazli Azmi ◽  
...  

Neuropathic pain has multiple etiologies, but a major feature is small fiber dysfunction or damage. Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that can image small nerve fibers in the cornea and has been utilized to show small nerve fiber loss in patients with diabetic and other neuropathies. CCM has comparable diagnostic utility to intraepidermal nerve fiber density for diabetic neuropathy, fibromyalgia and amyloid neuropathy and predicts the development of diabetic neuropathy. Moreover, in clinical intervention trials of patients with diabetic and sarcoid neuropathy, corneal nerve regeneration occurs early and precedes an improvement in symptoms and neurophysiology. Corneal nerve fiber loss also occurs and is associated with disease progression in multiple sclerosis, Parkinson's disease and dementia. We conclude that corneal confocal microscopy has good diagnostic and prognostic capability and fulfills the FDA criteria as a surrogate end point for clinical trials in peripheral and central neurodegenerative diseases.


2019 ◽  
Vol 104 (12) ◽  
pp. 6220-6228
Author(s):  
Sonja Püttgen ◽  
Gidon J Bönhof ◽  
Alexander Strom ◽  
Karsten Müssig ◽  
Julia Szendroedi ◽  
...  

AbstractContextThe factors that determine the development of diabetic sensorimotor polyneuropathy (DSPN) as a painful or painless entity are unknown.ObjectiveWe hypothesized that corneal nerve pathology could be more pronounced in painful DSPN, indicating predominant small nerve fiber damage.Design and MethodsIn this cross-sectional study, we assessed 53 patients with painful DSPN, 63 with painless DSPN, and 46 glucose-tolerant volunteers by corneal confocal microscopy (CCM), nerve conduction (NC), and quantitative sensory testing. DSPN was diagnosed according to modified Toronto Consensus criteria. A cutoff at 4 points on the 11-point rating scale was used to differentiate between painful and painless DSPN.ResultsAfter adjustment for age, sex, body mass index, and smoking, corneal nerve fiber density, corneal nerve fiber length, and corneal nerve branch density (CNBD) were reduced in both DSPN types compared with the control group (P < 0.05). Only CNBD differed between the groups; it was greater in patients with painful DSPN compared with those with painless DSPN [55.8 (SD, 29.9) vs 43.8 (SD, 28.3) branches/mm2; P < 0.05]. Several CCM measures were associated with NC and cold perception threshold in patients with painless DSPN (P < 0.05) but not those with painful DSPN.ConclusionDespite a similarly pronounced peripheral nerve dysfunction and corneal nerve fiber loss in patients with painful and painless DSPN, corneal nerve branching was enhanced in those with painful DSPN, pointing to some susceptibility of corneal nerve fibers toward regeneration in this entity, albeit possibly not to a sufficient degree.


2015 ◽  
Vol 39 (6) ◽  
pp. 543-544
Author(s):  
Daniel Scarr ◽  
Ilia Ostrovski ◽  
Leif Erik Lovblom ◽  
Tong Wu ◽  
Elise M. Halpern ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document