NADH-cytochrome b5 reductase in a Turkish family with recessive congenital methaemoglobinaemia type I: Table 1

2008 ◽  
Vol 61 (10) ◽  
pp. 1122-1123 ◽  
Author(s):  
M J Percy ◽  
D Aslan

The development of cyanosis at birth, the so-called blue baby syndrome, alerts paediatricians to the presence of congenital heart disease. In rare cases where the arterial blood gas analysis is normal the cyanosis is a consequence of methaemoglobinaemia. There are three distinct origins of methaemoglobinaemia; the presence of a haemoglobin variant, environmental toxicity and deficiency of cytochrome b5 reductase (cb5r). Two children born to two sets of first-degree related parents were cyanotic from birth. Differential diagnosis eliminated cardiac and pulmonary abnormalities. Measurement of methaemoglobin levels confirmed recessive congenital methaemoglobinaemia (RCM) and treatment with ascorbic acid was commenced. In the absence of neurological defects, type I disease was diagnosed. Sequence analysis of CYB5R3 revealed two different missense mutations (one which is novel, Ile85Ser) in the two families. Neither of the mutations was located in the FAD or the NADH binding sites of cb5r, thus supporting a diagnosis of type I disease.

2003 ◽  
Vol 70 (6) ◽  
pp. 404-409 ◽  
Author(s):  
Dorota Grabowska ◽  
Danuta Plochocka ◽  
Ewa Jablonska-Skwiecinska ◽  
Anna Chelstowska ◽  
Irmina Lewandowska ◽  
...  

1985 ◽  
Vol 32 (2) ◽  
pp. 112-118
Author(s):  
Seong Gyu Hwang ◽  
Su Taik Uh ◽  
Byung Soo Ahn ◽  
Dong Cheul Han ◽  
Choon Sik Park ◽  
...  

2017 ◽  
Vol 32 (2) ◽  
pp. 148-153
Author(s):  
Asifa Karamat ◽  
Shazia Awan ◽  
Muhammad Ghazanfar Hussain ◽  
Fahad Al Hameed ◽  
Faheem Butt ◽  
...  

2020 ◽  
Author(s):  
V. Collot ◽  
S. Malinverni ◽  
E. Schweitzer ◽  
J. Haltout ◽  
P. Mols ◽  
...  

AbstractStudy objectiveThe primary objective of the study was a quantitative analysis to assess the mean difference and 95% confidence interval of the difference between capillary and arterial blood gas analyses for pH, pCO2 and lactate. Secondary objective was to measure the sensitivity and specificity of capillary samples to detect altered pH, hypercarbia and lactic acidosis.MethodsAdults admitted to the ED for whom the treating physician deemed necessary an arterial blood gas analysis (BGA) were screened for inclusion. Simultaneous arterial and capillary samples were drawn for BGA. Agreement between the two methods for pH, pCO2 and lactate were studied with Bland-Altman bias plot analysis. Sensitivity, specificity, positive and negative predictive value as well as AUC were calculated for the ability of capillary samples to detect pH values outside normal ranges, hypercarbia and hyperlactatemia.Results197 paired analyses were included in the study. Mean difference for pH, between arterial and capillary BGA was 0.0095, 95% limits of agreement were -0.048 to 0.067. For pCO2, mean difference was -0.3 mmHg, 95% limits of agreement were -8.5 to 7.9 mmHg. Lactate mean difference was -0.93 mmol/L, 95% limits of agreement were -2.7 to 0.8 mmol/L. At a threshold of 7.34 for capillary pH had 98% sensitivity and 97% specificity to detect acidemia; at 45.9 mmHg capillary pCO2 had 89% sensitivity and 96% specificity to detect hypercarbia. Finally at a threshold of 3.5 mmol/L capillary lactate had 66% sensitivity to detect lactic acidosis.ConclusionCapillary measures of pH, pCO2 and lactate can’t replace arterial measurements although there is high concordance between the two methods for pH and pCO2 and moderate concordance for lactate. Capillary blood gas analysis had good accuracy when used as a screening tool to detect altered pH and hypercarbia but insufficient sensitivity and specificity when screening for lactic acidosis.


Sign in / Sign up

Export Citation Format

Share Document