ID: 84: β CELL DERIVED MIR-21 INCREASES APOPTOSIS VIA TRANSLATIONAL INHIBITION OF THE ANTIAPOPTOTIC PROTEIN BCL2 AND COULD SERVE AS A BIOMARKER OF TYPE 1 DIABETES MELLITUS

2016 ◽  
Vol 64 (4) ◽  
pp. 927.2-928
Author(s):  
EK Sims ◽  
A Lakhter ◽  
I Restrepo ◽  
X Tong ◽  
T Kono ◽  
...  

BackgroundAltered β cell and serum microRNA (miRNA) profiles have been described in Type 1 Diabetes (T1D), suggesting a role for these small, non-coding RNAs in β cell pathophysiology. Whereas previous reports have demonstrated increased expression of β cell miR-21 in models of T1D, the role of miR-21 in the β cell under pro-inflammatory conditions has been controversial.ObjectivesOur goal was to define the effect of miR-21 on β cell survival, through identification of miR-21 regulated gene targets. Furthermore, we sought to identify whether circulating extracellular vesicle (EV) β cell-derived miR-21 may reflect inflammatory stress within the islet during T1D development.Design/MethodsINS-1 828/13 or 828/33 β cells were treated with a cytokine mix to mimic the early T1D milieu. Islets were isolated from NOD mice with autoimmune diabetes and mice treated with multiple low dose streptozotocin (STZ) to induce chemical diabetes. To define the effects of miR-21 overexpression or inhibition, cells were transfected with a miR-21 mimic or inhibitor. In silico prediction tools were used to identify potential miR-21 targets. Luciferase assays and polyribosomal profiling (PRP) were performed to understand miR-21 and target interactions. EV RNA was isolated from media of cytokine treated cells and terminal serum of diabetic and normoglycemic control mice. Serum EV miR-21 concentration was assayed using digital droplet PCR.Resultsβ cell miR-21 was increased in cytokine treated INS-1 cells as well as islets from mouse models of T1D. miR-21 overexpression decreased β cell count and viability, and increased cleaved caspase 3 levels, suggesting increased apoptosis. In silico prediction tools identified the anti-apoptotic mRNA B Cell Lymphoma 2 (BCL2) as a conserved target of miR-21. Consistent with this, miR-21 overexpression decreased BCL2 protein expression. miR-21 inhibition had the opposite effect, increasing BCL2 protein levels and reducing cleaved caspase 3. Luciferase assay revealed decreased activation of the human BCL23' untranslated region (UTR) following miR-21 mimic treatment, suggesting a direct interaction between miR-21 and the BCL2 3'UTR. This effect was absent in cells transfected with a mutated BCL2 3'UTR. Preliminary polyribosomal profiling of cells overexpressing miR-21 revealed a shift of BCL-2 message toward monosomal fractions, indicating inhibition of BCL2 translation. The proapoptotic effect of overexpression was abrogated in 928/33 cells, which constitutively overexpress BCL-2. Cytokine treatment increased miR-21 levels in treated cell media 5-fold. This effect was doubled in EVs isolated from media. Although no increase in serum EVs existed in mice with chemical diabetes induced by STZ, when compared to controls, serum EV miR-21 was more than doubled in NOD mice with autoimmune diabetes.ConclusionsIn contrast to a prosurvival role in other systems, our results demonstrate that miR-21 increases β cell apoptosis, in part, via binding of the BCL2 mRNA 3'UTR to inhibit translation. In addition, our results suggest that cytokine-induced miR-21 production in β cells could increase circulating miR-21 levels during T1D development. Future work will identify new targets of β cell miR-21 and examine its role in vivo using transgenic mouse models, as well as verify elevations of exosomal miR-21 in serum samples from prediabetic mice and humans with developing T1D.

2003 ◽  
Vol 198 (7) ◽  
pp. 1103-1106 ◽  
Author(s):  
Irina Apostolou ◽  
Zhenyue Hao ◽  
Klaus Rajewsky ◽  
Harald von Boehmer

In type 1 diabetes, autoimmune T cells cause destruction of pancreatic β cells by largely unknown mechanism. Previous analyses have shown that β cell destruction is delayed but can occur in perforin-deficient nonobese diabetic (NOD) mice and that Fas-deficient NOD mice do not develop diabetes. However, because of possible pleiotropic functions of Fas, it was not clear whether the Fas receptor was an essential mediator of β cell death in type 1 diabetes. To directly test this hypothesis, we have generated a β cell–specific knockout of the Fas gene in a transgenic model of type 1 autoimmune diabetes in which CD4+ T cells with a transgenic TCR specific for influenza hemagglutinin (HA) are causing diabetes in mice that express HA under control of the rat insulin promoter. Here we show that the Fas-deficient mice develop autoimmune diabetes with slightly accelerated kinetics indicating that Fas-dependent apoptosis of β cells is a dispensable mode of cell death in this disease.


2020 ◽  
Vol 134 (13) ◽  
pp. 1679-1696 ◽  
Author(s):  
Lingling Shu ◽  
Ling Zhong ◽  
Yang Xiao ◽  
Xiaoping Wu ◽  
Yang Liu ◽  
...  

Abstract Type 1 diabetes is an autoimmune disease resulted from self-destruction of insulin-producing pancreatic β cells. However, the pathological pathways that trigger the autoimmune destruction remain poorly understood. Clinical studies have demonstrated close associations of neutrophils and neutrophil elastase (NE) with β-cell autoimmunity in patients with Type 1 diabetes. The present study aims to investigate the impact of NE inhibition on development of autoimmune diabetes in NOD mice. NE pharmacological inhibitor (sivelestat) or biological inhibitor (elafin) was supplemented into NOD mice to evaluate their effects on islet inflammation and diabetogenesis. The impact of NE inhibition on innate and adaptive immune cells was measured with flow cytometry and immunohistochemistry. A significant but transient increase in neutrophil infiltration accompanied with elevated NE activity was observed in the neonatal period of NOD mice. Treatment of NOD mice with sivelestat or elafin at the early age led to a marked reduction in spontaneous development of insulitis and autoimmune diabetes. Mechanistically, inhibition of NE significantly attenuated infiltration of macrophages and islet inflammation, thus ameliorating cytotoxic T cell-mediated autoimmune attack of pancreatic β cells. In vitro studies showed that NE directly induced inflammatory responses in both min6 β cells and RAW264.7 macrophages, and promoted macrophage migration. These findings support an important role of NE in triggering the onset and progression of β-cell autoimmunity, and suggest that pharmacological inhibition of NE may represent a promising therapeutic strategy for treatment of autoimmune diabetes.


2020 ◽  
Author(s):  
Ada Admin ◽  
Geming Lu ◽  
Francisco Rausell-Palamos ◽  
Jiamin Zhang ◽  
Zihan Zheng ◽  
...  

A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties <i>in vitro</i>. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity <i>in vitro</i>. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-γ+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D.


2020 ◽  
Author(s):  
David G. Ramirez ◽  
Awaneesh K. Upadhyay ◽  
Vinh T. Pham ◽  
Mark Ciccaglione ◽  
Mark A Borden ◽  
...  

AbstractType 1 diabetes (T1D) results from immune infiltration and destruction of insulin-producing β-cells within the pancreatic islets of Langerhans (insulitis), resulting in loss of glucose homeostasis. Early diagnosis during pre-symptomatic T1D would allow for therapeutic intervention prior to substantial loss of β-cell mass at T1D onset. There are limited methods to track the progression of insulitis and β-cell mass decline in pre-symptomatic T1D. During insulitis, the islet microvasculature increases permeability, such that sub-micron sized particles can extravasate and accumulate within the islet microenvironment. Ultrasound is a widely deployable and cost-effective clinical imaging modality. However, conventional microbubble contrast agents are restricted to the vasculature. Sub-micron sized nanodroplet (ND) phasechange agents can be vaporized into micron-sized bubbles; serving as a circulating microbubble precursor. We tested if NDs extravasate into the immune-infiltrated islet microenvironment. We performed ultrasound contrast-imaging following ND infusion in NOD mice and NOD;Rag1ko controls, and tracked diabetes development. We measured the biodistribution of fluorescently labeled NDs, with histological analysis of insulitis. Ultrasound contrast signal was elevated in the pancreas of 10w NOD mice following ND infusion and vaporization, but was absent in both the non-infiltrated kidney of NOD mice and pancreas of Rag1ko controls. High contrast elevation also correlated with rapid diabetes onset. In pancreata of NOD mice, infiltrated islets and nearby exocrine tissue were selectively labeled with fluorescent NDs. Thus, contrast ultrasound imaging with ND phase-change agents can detect insulitis prior to diabetes onset. This will be important for monitoring disease progression to guide and assess preventative therapeutic interventions for T1D.SignificanceThere is a need for imaging methods to detect type1 diabetes (T1D) progression prior to clinical diagnosis. T1D is a chronic disease that results from autoreactive T cells infiltrating the islet of Langerhans and destroying insulin-producing β-cells. Overt disease takes years to present and is only diagnosed after significant β-cells loss. As such, the possibility of therapeutic intervention to preserve β-cell mass is hampered by an inability to follow pre-symptomatic T1D progression. There are immunotherapies that can delay T1D development. However identifying ‘at risk’ individuals, and tracking whether therapeutic interventions are impacting disease progression, prior to T1D onset, is lacking. A method to detect insulitis and β-cell mass decline would present an opportunity to guide therapeutic treatments to prevent T1D.


2020 ◽  
Author(s):  
Ada Admin ◽  
Geming Lu ◽  
Francisco Rausell-Palamos ◽  
Jiamin Zhang ◽  
Zihan Zheng ◽  
...  

A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties <i>in vitro</i>. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity <i>in vitro</i>. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-γ+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D.


2020 ◽  
Vol 117 (49) ◽  
pp. 31219-31230
Author(s):  
Shanshan Tang ◽  
Mingfeng Zhang ◽  
Samuel Zeng ◽  
Yaxun Huang ◽  
Melissa Qin ◽  
...  

Type 1 diabetes (T1D) results from the autoimmune destruction of β cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of β cells. It is known that β cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of β cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear. Here, we show that, after reversal of autoimmunity by induction of haploidentical mixed chimerism, administration of gastrin plus epidermal growth factor augments β cell regeneration and normalizes blood glucose in the firmly established diabetic NOD mice. Using transgenic NOD mice with inducible lineage-tracing markers for insulin-producing β cells, Sox9+ductal progenitors, Nestin+mesenchymal stem cells, and glucagon-producing α cells, we have found that both reactivation of dysfunctional low-level insulin expression (insulinlo) β cells and neogenesis contribute to the regeneration, with the latter predominantly coming from transdifferentiation of α cells. These results indicate that, after reversal of autoimmunity, reactivation of β cells and transdifferentiation of α cells can provide sufficient new functional β cells to reach euglycemia in firmly established T1D.


2008 ◽  
Vol 82 (13) ◽  
pp. 6139-6149 ◽  
Author(s):  
Kate L. Graham ◽  
Natalie Sanders ◽  
Yan Tan ◽  
Janette Allison ◽  
Thomas W. H. Kay ◽  
...  

ABSTRACT Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet β cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged ≥12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8+ T-cell proportions in islets. Levels of β-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after β-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of β cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tingting Ge ◽  
Gaurang Jhala ◽  
Stacey Fynch ◽  
Satoru Akazawa ◽  
Sara Litwak ◽  
...  

Cytokines that signal through the JAK-STAT pathway, such as interferon-γ (IFN-γ) and common γ chain cytokines, contribute to the destruction of insulin-secreting β cells by CD8+ T cells in type 1 diabetes (T1D). We previously showed that JAK1/JAK2 inhibitors reversed autoimmune insulitis in non-obese diabetic (NOD) mice and also blocked IFN-γ mediated MHC class I upregulation on β cells. Blocking interferons on their own does not prevent diabetes in knockout NOD mice, so we tested whether JAK inhibitor action on signaling downstream of common γ chain cytokines, including IL-2, IL-7 IL-15, and IL-21, may also affect the progression of diabetes in NOD mice. Common γ chain cytokines activate JAK1 and JAK3 to regulate T cell proliferation. We used a JAK1-selective inhibitor, ABT 317, to better understand the specific role of JAK1 signaling in autoimmune diabetes. ABT 317 reduced IL-21, IL-2, IL-15 and IL-7 signaling in T cells and IFN-γ signaling in β cells, but ABT 317 did not affect GM-CSF signaling in granulocytes. When given in vivo to NOD mice, ABT 317 reduced CD8+ T cell proliferation as well as the number of KLRG+ effector and CD44hiCD62Llo effector memory CD8+ T cells in spleen. ABT 317 also prevented MHC class I upregulation on β cells. Newly diagnosed diabetes was reversed in 94% NOD mice treated twice daily with ABT 317 while still on treatment at 40 days and 44% remained normoglycemic after a further 60 days from discontinuing the drug. Our results indicate that ABT 317 blocks common γ chain cytokines in lymphocytes and interferons in lymphocytes and β cells and are thus more effective against diabetes pathogenesis than IFN-γ receptor deficiency alone. Our studies suggest use of this class of drug for the treatment of type 1 diabetes.


2003 ◽  
Vol 198 (10) ◽  
pp. 1527-1537 ◽  
Author(s):  
Shannon Turley ◽  
Laurent Poirot ◽  
Masakazu Hattori ◽  
Christophe Benoist ◽  
Diane Mathis

The prelude to type-1 diabetes is leukocyte infiltration into the pancreatic islets, or insulitis. This process begins in pancreatic lymph nodes when T lymphocytes reactive to islet β cells encounter antigen-presenting cells (APCs) displaying peptides derived from β cell proteins. We show here that a ripple of physiological β cell death, which occurs at 2 wk of age in all mouse strains, precipitates the arrival of such APCs, and that the relevant APC is a dendritic cell of CD11c+CD11b+CD8α− phenotype. These findings have significant implications concerning the nature of the diabetes-provoking deficits in NOD mice, the identity of the primordial diabetogenic antigens, and our understanding of the balance between immunity and tolerance in a pathological context.


Diabetes ◽  
2007 ◽  
Vol 56 (8) ◽  
pp. 2116-2123 ◽  
Author(s):  
Chang-Qing Xia ◽  
Ruihua Peng ◽  
Yushi Qiu ◽  
Mani Annamalai ◽  
David Gordon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document