scholarly journals 52 Artificial intelligence for humanitarian action: an interdisciplinary approach to communicable diseases in refugees

Author(s):  
R Jarral ◽  
T Kells ◽  
N Yue Lin ◽  
A Mason-Mackay ◽  
K Sharma
2021 ◽  
Author(s):  
◽  
Hazel Darney

<p>With the rapid uptake of machine learning artificial intelligence in our daily lives, we are beginning to realise the risks involved in implementing this technology in high-stakes decision making. This risk is due to machine learning decisions being based in human-curated datasets, meaning these decisions are not bias-free. Machine learning datasets put women at a disadvantage due to factors including (but not limited to) historical exclusion of women in data collection, research, and design; as well as the low participation of women in artificial intelligence fields. These factors mean that applications of machine learning may fail to treat the needs and experiences of women as equal to those of men.    Research into understanding gender biases in machine learning frequently occurs within the computer science field. This has frequently resulted in research where bias is inconsistently defined, and proposed techniques do not engage with relevant literature outside of the artificial intelligence field. This research proposes a novel, interdisciplinary approach to the measurement and validation of gender biases in machine learning. This approach translates methods of human-based gender bias measurement in psychology, forming a gender bias questionnaire for use on a machine rather than a human.   The final output system of this research as a proof of concept demonstrates the potential for a new approach to gender bias investigation. This system takes advantage of the qualitative nature of language to provide a new way of understanding gender data biases by outputting both quantitative and qualitative results. These results can then be meaningfully translated into their real-world implications.</p>


2021 ◽  
Author(s):  
◽  
Hazel Darney

<p>With the rapid uptake of machine learning artificial intelligence in our daily lives, we are beginning to realise the risks involved in implementing this technology in high-stakes decision making. This risk is due to machine learning decisions being based in human-curated datasets, meaning these decisions are not bias-free. Machine learning datasets put women at a disadvantage due to factors including (but not limited to) historical exclusion of women in data collection, research, and design; as well as the low participation of women in artificial intelligence fields. These factors mean that applications of machine learning may fail to treat the needs and experiences of women as equal to those of men.    Research into understanding gender biases in machine learning frequently occurs within the computer science field. This has frequently resulted in research where bias is inconsistently defined, and proposed techniques do not engage with relevant literature outside of the artificial intelligence field. This research proposes a novel, interdisciplinary approach to the measurement and validation of gender biases in machine learning. This approach translates methods of human-based gender bias measurement in psychology, forming a gender bias questionnaire for use on a machine rather than a human.   The final output system of this research as a proof of concept demonstrates the potential for a new approach to gender bias investigation. This system takes advantage of the qualitative nature of language to provide a new way of understanding gender data biases by outputting both quantitative and qualitative results. These results can then be meaningfully translated into their real-world implications.</p>


2019 ◽  
Vol 11 (13) ◽  
pp. 1528 ◽  
Author(s):  
Sébastien Valade ◽  
Andreas Ley ◽  
Francesco Massimetti ◽  
Olivier D’Hondt ◽  
Marco Laiolo ◽  
...  

Most of the world’s 1500 active volcanoes are not instrumentally monitored, resulting in deadly eruptions which can occur without observation of precursory activity. The new Sentinel missions are now providing freely available imagery with unprecedented spatial and temporal resolutions, with payloads allowing for a comprehensive monitoring of volcanic hazards. We here present the volcano monitoring platform MOUNTS (Monitoring Unrest from Space), which aims for global monitoring, using multisensor satellite-based imagery (Sentinel-1 Synthetic Aperture Radar SAR, Sentinel-2 Short-Wave InfraRed SWIR, Sentinel-5P TROPOMI), ground-based seismic data (GEOFON and USGS global earthquake catalogues), and artificial intelligence (AI) to assist monitoring tasks. It provides near-real-time access to surface deformation, heat anomalies, SO2 gas emissions, and local seismicity at a number of volcanoes around the globe, providing support to both scientific and operational communities for volcanic risk assessment. Results are visualized on an open-access website where both geocoded images and time series of relevant parameters are provided, allowing for a comprehensive understanding of the temporal evolution of volcanic activity and eruptive products. We further demonstrate that AI can play a key role in such monitoring frameworks. Here we design and train a Convolutional Neural Network (CNN) on synthetically generated interferograms, to operationally detect strong deformation (e.g., related to dyke intrusions), in the real interferograms produced by MOUNTS. The utility of this interdisciplinary approach is illustrated through a number of recent eruptions (Erta Ale 2017, Fuego 2018, Kilauea 2018, Anak Krakatau 2018, Ambrym 2018, and Piton de la Fournaise 2018–2019). We show how exploiting multiple sensors allows for assessment of a variety of volcanic processes in various climatic settings, ranging from subsurface magma intrusion, to surface eruptive deposit emplacement, pre/syn-eruptive morphological changes, and gas propagation into the atmosphere. The data processed by MOUNTS is providing insights into eruptive precursors and eruptive dynamics of these volcanoes, and is sharpening our understanding of how the integration of multiparametric datasets can help better monitor volcanic hazards.


2021 ◽  
Vol 3 ◽  
Author(s):  
Marieke van Erp ◽  
Christian Reynolds ◽  
Diana Maynard ◽  
Alain Starke ◽  
Rebeca Ibáñez Martín ◽  
...  

In this paper, we discuss the use of natural language processing and artificial intelligence to analyze nutritional and sustainability aspects of recipes and food. We present the state-of-the-art and some use cases, followed by a discussion of challenges. Our perspective on addressing these is that while they typically have a technical nature, they nevertheless require an interdisciplinary approach combining natural language processing and artificial intelligence with expert domain knowledge to create practical tools and comprehensive analysis for the food domain.


2002 ◽  
Vol 31 (4) ◽  
pp. 613-616
Author(s):  
Ronald Gray

In this highly ambitious book, Glynn attempts to provide a description of both how the brain works and how it has developed. Taking an interdisciplinary approach (he is a physiologist by training), he relies on insights from a wide number of disciplines, including psychology, neurology, anthropology, linguistics, artificial intelligence, psychiatry, physiology, and even philosophy. He is interested in providing answers to some perennial and interconnected questions that relate to the mind: “What kind of thing is mind? What is the relation between our minds and our bodies and, more specifically, what is the relation between what goes on in our minds, and what goes on in our brains? How did brains and minds originate? Can our brains be regarded as nothing more than exceedingly complicated machines? Can minds exist without brains” (p. 4). Although his arguments are rather technical, the book is intended for a nonscientist audience.


Author(s):  
Andrew Best ◽  
Samantha F. Warta ◽  
Katelynn A. Kapalo ◽  
Stephen M. Fiore

Using research in social cognition as a foundation, we studied rapid versus reflective mental state attributions and the degree to which machine learning classifiers can be trained to make such judgments. We observed differences in response times between conditions, but did not find significant differences in the accuracy of mental state attributions. We additionally demonstrate how to train machine classifiers to identify mental states. We discuss advantages of using an interdisciplinary approach to understand and improve human-robot interaction and to further the development of social cognition in artificial intelligence.


Sign in / Sign up

Export Citation Format

Share Document