scholarly journals P401 Development and Utilization of Antibodies Specific for Extracellular Loops of the Treponema pallidum outer membrane protein BamA (TP0326)

Author(s):  
S McBride ◽  
M Ferguson ◽  
M Kelly ◽  
K Hawley ◽  
A Luthra ◽  
...  
1995 ◽  
Vol 177 (12) ◽  
pp. 3556-3562 ◽  
Author(s):  
D R Blanco ◽  
C I Champion ◽  
M M Exner ◽  
H Erdjument-Bromage ◽  
R E Hancock ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Amin Addetia ◽  
Michelle J. Lin ◽  
Quynh Phung ◽  
Hong Xie ◽  
Meei-Li Huang ◽  
...  

ABSTRACT Immune evasion and disease progression of Treponema pallidum subsp. pallidum are associated with sequence diversity in the hypervariable outer membrane protein TprK. Previous attempts to study variation within TprK have sequenced at depths insufficient to fully appreciate the hypervariable nature of the protein, failed to establish linkage between the protein’s seven variable regions, or were conducted on isolates passed through rabbits. As a consequence, a complete profile of tprK during infection in the human host is still lacking. Furthermore, prior studies examining how T. pallidum subsp. pallidum uses its repertoire of genomic donor sites to generate diversity within the variable regions of the tprK have yielded a partial understanding of this process due to the limited number of tprK alleles examined. In this study, we used short- and long-read deep sequencing to directly characterize full-length tprK alleles from T. pallidum subsp. pallidum collected from early lesions of patients attending two sexually transmitted infection clinics in Italy. We demonstrate that strains collected from cases of secondary syphilis contain significantly more unique variable region sequences and full-length TprK sequences than those from cases of primary syphilis. Our data, combined with recent data available on Chinese T. pallidum subsp. pallidum specimens, show the near-complete absence of overlap in TprK sequences among the 41 specimens profiled to date. We further estimate that the potential antigenic variability carried by TprK rivals that of current estimates of the human adaptive immune system. These data underscore the immunoevasive ability of TprK that allows T. pallidum subsp. pallidum to establish lifelong infection. IMPORTANCE Syphilis continues to be a significant public health issue in both low- and high-income countries, including the United States where the rate of syphilis infection has increased over the past 5 years. Treponema pallidum subsp. pallidum, the causative agent of syphilis, carries the outer membrane protein TprK that undergoes segmental gene conversion to constantly create new sequences. We performed full-length deep sequencing of TprK to examine TprK diversity in clinical T. pallidum subsp. pallidum strains. We then combined our results with data from all samples for which TprK deep sequencing results were available. We found almost no overlap in TprK sequences between different patients. Moreover, our data allowed us to estimate the total number of TprK variants that T. pallidum subsp. pallidum can potentially generate. Our results support how the T. pallidum subsp. pallidum TprK antigenic variation system is an equal adversary of the human immune system leading to pathogen persistence in the host.


2005 ◽  
Vol 187 (18) ◽  
pp. 6499-6508 ◽  
Author(s):  
Karsten R. O. Hazlett ◽  
David L. Cox ◽  
Marc Decaffmeyer ◽  
Michael P. Bennett ◽  
Daniel C. Desrosiers ◽  
...  

ABSTRACT The outer membrane of Treponema pallidum, the noncultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning β-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive β-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic α-helices. Insertion of the recombinant, nonlipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody.


2020 ◽  
Author(s):  
Austin M. Haynes ◽  
Mark Fernandez ◽  
Emily Romeis ◽  
Oriol Mitjà ◽  
Kelika A. Konda ◽  
...  

AbstractBackgroundAn effective syphilis vaccine should elicit antibodies to Treponema pallidum subsp. pallidum (T. p. pallidum) surface antigens to induce pathogen clearance through opsonophagocytosis. Although the combination of bioinformatics, structural, and functional analyses of T. p. pallidum genes to identify putative outer membrane proteins (OMPs) resulted in a list of potential vaccine candidates, still very little is known about whether and how transcription of these genes is regulated during infection. This knowledge gap is a limitation to vaccine design, as immunity generated to an antigen that can be down-regulated or even silenced at the transcriptional level without affecting virulence would not induce clearance of the pathogen, hence allowing disease progression.Principal findingsWe report here that tp1031, the T. p. pallidum gene encoding the putative OMP and vaccine candidate TprL is differentially expressed in several T. p. pallidum strains, suggesting transcriptional regulation. Experimental identification of the tprL transcriptional start site revealed that a homopolymeric G sequence of varying length resides within the tprL promoter and that its length affects promoter activity compatible with phase variation. Conversely, in the closely related pathogen T. p. subsp. pertenue, the agent of yaws, where a naturally-occurring deletion has eliminated the tprL promoter region, elements necessary for protein synthesis, and part of the gene ORF, tprL transcription level are negligible compared to T. p. pallidum strains. Accordingly, the humoral response to TprL is absent in yaws-infected laboratory animals and patients compared to syphilis-infected subjects.ConclusionThe ability of T. p. pallidum to stochastically vary tprL expression should be considered in any vaccine development effort that includes this antigen. The role of phase variation in contributing to T. p. pallidum antigenic diversity should be further studied.Author SummarySyphilis is still an endemic disease in many low- and middle-income countries and has been resurgent in high-income nations for almost two decades now. In endemic areas, syphilis still causes significant morbidity and mortality in patients, particularly when its causative agent, the bacterium Treponema pallidum subsp. pallidum is transmitted to the fetus during pregnancy. Although there are significant ongoing efforts to identify an effective syphilis vaccine to bring into clinical trials within the decade in the U.S., such efforts are partially hindered by the lack of knowledge on transcriptional regulation of many genes encoding vaccine candidates. Here, we start addressing this knowledge gap for the putative outer membrane protein (OMP) and vaccine candidates TprL, encoded by the tp1031 gene. As we previously reported for other putative OMP-encoding genes of the syphilis agent, tprL transcription level appears to be affected by the length of a homopolymeric sequence of guanosines (Gs) located within the gene promoter. This is a mechanism known as phase variation and often involved in altering the surface antigenic profile of a bacterial pathogen to facilitate immune evasion and/or adaptation to the host milieu.


1997 ◽  
Vol 179 (4) ◽  
pp. 1230-1238 ◽  
Author(s):  
C I Champion ◽  
D R Blanco ◽  
M M Exner ◽  
H Erdjument-Bromage ◽  
R E Hancock ◽  
...  

2011 ◽  
Vol 80 (6) ◽  
pp. 1496-1515 ◽  
Author(s):  
Daniel C. Desrosiers ◽  
Arvind Anand ◽  
Amit Luthra ◽  
Star M. Dunham-Ems ◽  
Morgan LeDoyt ◽  
...  

2015 ◽  
Vol 197 (11) ◽  
pp. 1906-1920 ◽  
Author(s):  
Amit Luthra ◽  
Arvind Anand ◽  
Kelly L. Hawley ◽  
Morgan LeDoyt ◽  
Carson J. La Vake ◽  
...  

ABSTRACTWe recently demonstrated that TP_0326 is a bona fide rare outer membrane protein (OMP) inTreponema pallidumand that it possesses characteristic BamA bipartite topology. Herein, we used immunofluorescence analysis (IFA) to show that only the β-barrel domain of TP_0326 contains surface-exposed epitopes in intactT. pallidum. Using the solved structure ofNeisseria gonorrhoeaeBamA, we generated a homology model of full-length TP_0326. Although the model predicts a typical BamA fold, the β-barrel harbors features not described in other BamAs. Structural modeling predicted that a dome comprised of three large extracellular loops, loop 4 (L4), L6, and L7, covers the barrel's extracellular opening. L4, the dome's major surface-accessible loop, contains mainly charged residues, while L7 is largely neutral and contains a polyserine tract in a two-tiered conformation. L6 projects into the β-barrel but lacks the VRGF/Y motif that anchors L6 within other BamAs. IFA and opsonophagocytosis assay revealed that L4 is surface exposed and an opsonic target. Consistent with B cell epitope predictions, immunoblotting and enzyme-linked immunosorbent assay (ELISA) confirmed that L4 is an immunodominant loop inT. pallidum-infected rabbits and humans with secondary syphilis. Antibody capture experiments usingEscherichia coliexpressing OM-localized TP_0326 as aT. pallidumsurrogate further established the surface accessibility of L4. Lastly, we found that a naturally occurring substitution (Leu593→ Gln593) in the L4 sequences ofT. pallidumstrains affects antibody binding in sera from syphilitic patients. Ours is the first study to employ a “structure-to-pathogenesis” approach to map the surface topology of aT. pallidumOMP within the context of syphilitic infection.IMPORTANCEPreviously, we reported that TP_0326 is a bona fide rare outer membrane protein (OMP) inTreponema pallidumand that it possesses the bipartite topology characteristic of a BamA ortholog. Using a homology model as a guide, we found that TP_0326 displays unique features which presumably relate to its function(s) in the biogenesis ofT. pallidum's unorthodox OM. The model also enabled us to identify an immunodominant epitope in a large extracellular loop that is both an opsonic target and subject to immune pressure in a human population. Ours is the first study to follow a structure-to-pathogenesis approach to map the surface topology of aT. pallidumrare OMP within the context of syphilitic infection.


Sign in / Sign up

Export Citation Format

Share Document