scholarly journals Intravascular donor monocytes play a central role in lung transplant ischaemia-reperfusion injury

Thorax ◽  
2017 ◽  
Vol 73 (4) ◽  
pp. 350-360 ◽  
Author(s):  
Kate Colette Tatham ◽  
Kieran Patrick O'Dea ◽  
Rosalba Romano ◽  
Hannah Elizabeth Donaldson ◽  
Kenji Wakabayashi ◽  
...  

RationalePrimary graft dysfunction in lung transplant recipients derives from the initial, largely leukocyte-dependent, ischaemia-reperfusion injury. Intravascular lung-marginated monocytes have been shown to play key roles in experimental acute lung injury, but their contribution to lung ischaemia-reperfusion injury post transplantation is unknown.ObjectiveTo define the role of donor intravascular monocytes in lung transplant-related acute lung injury and primary graft dysfunction.MethodsIsolated perfused C57BL/6 murine lungs were subjected to warm ischaemia (2 hours) and reperfusion (2 hours) under normoxic conditions. Monocyte retention, activation phenotype and the effects of their depletion by intravenous clodronate-liposome treatment on lung inflammation and injury were determined. In human donor lung transplant samples, the presence and activation phenotype of monocytic cells (low side scatter, 27E10+, CD14+, HLA-DR+, CCR2+) were evaluated by flow cytometry and compared with post-implantation lung function.ResultsIn mouse lungs following ischaemia-reperfusion, substantial numbers of lung-marginated monocytes remained within the pulmonary microvasculature, with reduced L-selectin and increased CD86 expression indicating their activation. Monocyte depletion resulted in reductions in lung wet:dry ratios, bronchoalveolar lavage fluid protein, and perfusate levels of RAGE, MIP-2 and KC, while monocyte repletion resulted in a partial restoration of the injury. In human lungs, correlations were observed between pre-implantation donor monocyte numbers/their CD86 and TREM-1 expression and post-implantation lung dysfunction at 48 and 72 hours.ConclusionsThese results indicate that lung-marginated intravascular monocytes are retained as a ‘passenger’ leukocyte population during lung transplantation, and play a key role in the development of transplant-associated ischaemia-reperfusion injury.

2015 ◽  
Vol 129 (4) ◽  
pp. 345-362 ◽  
Author(s):  
Jordi Gracia-Sancho ◽  
Araní Casillas-Ramírez ◽  
Carmen Peralta

Ischaemia/reperfusion injury is an important cause of liver damage during surgical procedures such as hepatic resection and liver transplantation, and represents the main cause of graft dysfunction post-transplantation. Molecular processes occurring during hepatic ischaemia/reperfusion are diverse, and continuously include new and complex mechanisms. The present review aims to summarize the newest concepts and hypotheses regarding the pathophysiology of liver ischaemia/reperfusion, making clear distinction between situations of cold and warm ischaemia. Moreover, the most updated therapeutic strategies including pharmacological, genetic and surgical interventions, as well as some of the scientific controversies in the field are described.


2019 ◽  
Vol 24 (1) ◽  
pp. 54-66 ◽  
Author(s):  
Barbara J. Wilkey ◽  
Benjamin A. Abrams

Primary graft dysfunction (PGD) is a form of acute lung injury that develops within the first 72 hours after lung transplantation. The overall incidence of PGD is estimated to be around 30%, and the 30-day mortality for grade 3 PGD around 36%. PGD is also associated with the development of bronchiolitis obliterans syndrome, a specific form of chronic lung allograft dysfunction. In this article, we will discuss perioperative strategies for PGD prevention as well as possible future avenues for prevention and treatment.


1998 ◽  
Vol 95 (3) ◽  
pp. 369-376
Author(s):  
Chi-Huei CHIANG ◽  
Kerry WU ◽  
Cheng-Ping YU ◽  
Wann-Cherng PERNG ◽  
Horng-Chin YAN ◽  
...  

1.An intervention to reduce ischaemia–reperfusion lung injury will be an important advance in transplant medicine. Although the mechanisms associated with producing ischaemia–reperfusion endothelial injury have not been completely elucidated, many of the injury mediators have been studied in detail. While no single pharmacological therapy is likely to be totally effective in eliminating this complex injury, we have developed a mixture of agents that are known to block pathways involved in producing ischaemia–reperfusion-associated lung vascular injury. 2.The present study modified University of Wisconsin solution (UW) by adding one of the protective agents prostaglandin E1 (PGE1), dexamethasone (Dex) or dibutyryl cAMP (Bt2-cAMP), or a combination of these, to the perfusate of rat lungs exposed to 4 ;h of cold ischaemia followed by 1 ;h of reperfusion. Nine modified UW solutions were studied: (1) UW+Dex, (2) UW+PGE1, (3) UW+Bt2-cAMP, (4) UW+Dex×3, (5) UW+PGE1×3, (6) UW+Bt2-cAMP×3, (7) UW+Dex+PGE1, (8) UW+Dex+Bt2-cAMP, (9) UW+PGE1+Bt2-cAMP. These solutions were utilized in individual experiments to assess haemodynamic changes, lung weight gain, the capillary filtration coefficient (Kfc) and pathology in all lungs. 3.The results indicate that lung weight gain and Kfc values were significantly lower than with UW alone in groups 1, 2 and 3, which contained only one additional protective agent. In groups 4, 5 and 6, which contain three times the concentration of each protective agent, both Kfc and lung weight gain were similar to those measured in groups 1, 2 and 3, i.e. lungs were protected but the protection was not dose dependent. In groups 7, 8 and 9, which contained two protective agents, lung weight gain and Kfc were greatly reduced compared with UW alone. Histopathological studies showed similar decreases in the injury profiles of lungs. 4.Although UW contains several antioxidant protective agents such as allopurinol and glutathione, it did not provide effective protection in our ischaemia–reperfusion lung injury model. UW modified with an additive of PGE1, Dex or Bt2-cAMP attenuated ischaemia–reperfusion injury. Furthermore, UW containing two of these protective agents augmented the protection. Among the modified solutions, it appears that UW+PGE1+Bt2-cAMP protects the lungs to a greater extent than all other solutions used in our study. We suggest that preservation solutions containing PGE1-Bt2-cAMP will provide additional protective effects to organs stored for transplantation.


2018 ◽  
Vol 24 (23) ◽  
pp. 2692-2700 ◽  
Author(s):  
H. Susana Marinho ◽  
Paulo Marcelino ◽  
Helena Soares ◽  
Maria Luísa Corvo

Background: Ischaemia-reperfusion injury (IRI), a major complication occurring during organ transplantation, involves an initial ischemia insult, due to loss of blood supply, followed by an inflammation-mediated reperfusion injury. A variety of molecular targets and pathways involved in liver IRI have been identified. Gene silencing through RNA interference (RNAi) by means of small interference RNA (siRNA) targeting mediators of IRI is a promising therapeutic approach. Objective: This study aims at reviewing the use of siRNAs as therapeutic agents to prevent IRI during liver transplantation. Method: We review the crucial choice of siRNA targets and the advantages and problems of the use of siRNAs. Results: We propose possible targets for siRNA therapy during liver IRI. Moreover, we discuss how drug delivery systems, namely liposomes, may improve siRNA therapy by increasing siRNA stability in vivo and avoiding siRNA off-target effects. Conclusion: siRNA therapeutic potential to preclude liver IRI can be improved by a better knowledge of what molecules to target and by using more efficient delivery strategies.


Sign in / Sign up

Export Citation Format

Share Document