Semi-Implicit Time-Discretization Schemes for the Bidomain Model

2008 ◽  
Vol 46 (5) ◽  
pp. 2443-2468 ◽  
Author(s):  
Marc Ethier ◽  
Yves Bourgault
2004 ◽  
Vol 01 (04) ◽  
pp. 747-768
Author(s):  
CHRISTIAN ROHDE ◽  
MAI DUC THANH

We construct approximate solutions of the initial value problem for dynamical phase transition problems via a variational scheme in one space dimension. First, we deal with a local model of phase transition dynamics which contains second and third order spatial derivatives modeling the effects of viscosity and surface tension. Assuming that the initial data are periodic, we prove the convergence of approximate solutions to a weak solution which satisfies the natural dissipation inequality. We note that this result still holds for non-periodic initial data. Second, we consider a model of phase transition dynamics with only Lipschitz continuous stress–strain function which contains a non-local convolution term to take account of surface tension. We also establish the existence of weak solutions. In both cases the proof relies on implicit time discretization and the analysis of a minimization problem at each time step.


2002 ◽  
Vol 4 (3) ◽  
pp. 167-181 ◽  
Author(s):  
Simona Sanfelici

The aim of this work is twofold. First we focus on the complex phenomenon of electrogram fractionation, due to the presence of discontinuities in the conduction properties of the cardiac tissue in a bidomain model. Numerical simulations of paced activation may help to understand the role of the membrane ionic currents and of the changes in cellular coupling in the formation of conduction blocks and fractionation of the electrogram waveform. In particular, we show that fractionation is independent ofINAalterations and that it can be described by the bidomain model of cardiac tissue. Moreover, some deflections in fractionated electrograms may give nonlocal information about the shape of damaged areas, also revealing the presence of inhomogeneities in the intracellular conductivity of the medium at a distance.The second point of interest is the analysis of the effects of space–time discretization on numerical results, especially during slow conduction in damaged cardiac tissue. Indeed, large discretization steps can induce numerical artifacts such as slowing down of conduction velocity, alteration in extracellular and transmembrane potential waveforms or conduction blocks, which are not predicted by the continuous bidomain model. Several possible numerical and physiological explanations of these effects are given. Essentially, the discrete system obtained at the end of the approximation process may be interpreted as a discrete model of the cardiac tissue made up of isopotential cells where the effective intracellular conductivity tensor depends on the space discretization steps; the increase of these steps results in an increase of the effective intracellular resistance and can induce conduction blocks if a certain critical value is exceeded.


2019 ◽  
Vol 29 (1) ◽  
pp. 012101
Author(s):  
Konstantin Fackeldey ◽  
Péter Koltai ◽  
Peter Névir ◽  
Henning Rust ◽  
Axel Schild ◽  
...  

2006 ◽  
Vol 16 (10) ◽  
pp. 1559-1598 ◽  
Author(s):  
ALFREDO BERMÚDEZ ◽  
RODOLFO RODRÍGUEZ ◽  
DUARTE SANTAMARINA

This paper deals with a time-domain mathematical model for dissipative acoustics and is organized as follows. First, the equations of this model are written in terms of displacement and temperature fields and an energy equation is obtained. The resulting initial-boundary value problem is written in a functional framework allowing us to prove the existence and uniqueness of solution. Next, two different time-discretization schemes are proposed, and stability and error estimates are proved for both. Finally, numerical results are reported which were obtained by combining these time-schemes with Lagrangian and Raviart–Thomas finite elements for temperature and displacement fields, respectively.


2015 ◽  
Vol 18 (1) ◽  
pp. 203-229 ◽  
Author(s):  
Guoqiao You ◽  
Shingyu Leung

AbstractWe propose a new semi-implicit level set approach to a class of curvature dependent flows. The method generalizes a recent algorithm proposed for the motion by mean curvature where the interface is updated by solving the Rudin-Osher-Fatemi (ROF) model for image regularization. Our proposal is general enough so that one can easily extend and apply the method to other curvature dependent motions. Since the derivation is based on a semi-implicit time discretization, this suggests that the numerical scheme is stable even using a time-step significantly larger than that of the corresponding explicit method. As an interesting application of the numerical approach, we propose a new variational approach for extracting limit cycles in dynamical systems. The resulting algorithm can automatically detect multiple limit cycles staying inside the initial guess with no condition imposed on the number nor the location of the limit cycles. Further, we also propose in this work an Eulerian approach based on the level set method to test if the limit cycles are stable or unstable.


Sign in / Sign up

Export Citation Format

Share Document