dynamical phase transition
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 21)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (11) ◽  
pp. 113302
Author(s):  
Angelo Giorgio Cavaliere ◽  
Thibault Lesieur ◽  
Federico Ricci-Tersenghi

Abstract Random constraint satisfaction problems (CSPs) can exhibit a phase where the number of constraints per variable α makes the system solvable in theory on the one hand, but also makes the search for a solution hard, meaning that common algorithms such as Monte Carlo (MC) method fail to find a solution. The onset of this hardness is deeply linked to the appearance of a dynamical phase transition where the phase space of the problem breaks into an exponential number of clusters. The exact position of this dynamical phase transition is not universal with respect to the details of the Hamiltonian one chooses to represent a given problem. In this paper, we develop some theoretical tools in order to find a systematic way to build a Hamiltonian that maximizes the dynamic α d threshold. To illustrate our techniques, we will concentrate on the problem of continuous coloring, where one tries to set an angle x i ∈ [0; 2π] on each node of a network in such a way that no adjacent nodes are closer than some threshold angle θ, that is cos(x i − x j )⩽ cos θ. This problem can be both seen as a continuous version of the discrete graph coloring problem or as a one-dimensional version of the Mari–Krzakala–Kurchan model. The relevance of this model stems from the fact that continuous CSPs on sparse random graphs remain largely unexplored in statistical physics. We show that for sufficiently small angle θ this model presents a random first order transition and compute the dynamical, condensation and Kesten–Stigum transitions; we also compare the analytical predictions with MC simulations for values of θ = 2π/q, q ∈ N . Choosing such values of q allows us to easily compare our results with the renowned problem of discrete coloring.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
B. Besga ◽  
F. Faisant ◽  
A. Petrosyan ◽  
S. Ciliberto ◽  
Satya N. Majumdar

2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Sam Wilken ◽  
Rodrigo E. Guerra ◽  
Dov Levine ◽  
Paul M. Chaikin

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
F. Barratt ◽  
Aleix Bou Comas ◽  
P. Crowley ◽  
V. Oganesyan ◽  
P. Sollich ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 321
Author(s):  
Mirko Stumpo ◽  
Virgilio Quattrociocchi ◽  
Simone Benella ◽  
Tommaso Alberti ◽  
Giuseppe Consolini

The interplanetary medium variability has been extensively studied by means of different approaches showing the existence of a wide variety of dynamical features, such as self-similarity, self-organization, turbulence and intermittency, and so on. Recently, by means of Parker solar probe measurements, it has been found that solar wind magnetic field fluctuations in the inertial range show a clear transition near 0.4 AU, both in terms of spectral features and multifractal properties. This breakdown of the scaling features has been interpreted as the evidence of a dynamical phase transition. Here, by using the Klimontovich S-theorem, we investigate how the process of self-organization is under way through the inner heliosphere, going deeper into the characterization of this dynamical phase transition by measuring the evolution of entropic-based measures through the inner heliosphere.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Matthieu Vanicat ◽  
Eric Bertin ◽  
Vivien Lecomte ◽  
Eric Ragoucy

Considering the large deviations of activity and current in the Asymmetric Simple Exclusion Process (ASEP), we show that there exists a non-trivial correspondence between the joint scaled cumulant generating functions of activity and current of two ASEPs with different parameters. This mapping is obtained by applying a similarity transform on the deformed Markov matrix of the source model in order to obtain the deformed Markov matrix of the target model. We first derive this correspondence for periodic boundary conditions, and show in the diffusive scaling limit (corresponding to the Weakly Asymmetric Simple Exclusion Processes, or WASEP) how the mapping is expressed in the language of Macroscopic Fluctuation Theory (MFT). As an interesting specific case, we map the large deviations of current in the ASEP to the large deviations of activity in the SSEP, thereby uncovering a regime of Kardar--Parisi--Zhang in the distribution of activity in the SSEP. At large activity, particle configurations exhibit hyperuniformity [Jack et al., PRL 114, 060601 (2015)]. Using results from quantum spin chain theory, we characterize the hyperuniform regime by evaluating the small wavenumber asymptotic behavior of the structure factor at half-filling. Conversely, we formulate from the MFT results a conjecture for a correlation function in spin chains at any fixed total magnetization (in the thermodynamic limit). In addition, we generalize the mapping to the case of two open ASEPs with boundary reservoirs, and we apply it in the WASEP limit in the MFT formalism. This mapping also allows us to find a symmetry-breaking dynamical phase transition (DPT) in the WASEP conditioned by activity, from the prior knowledge of a DPT in the WASEP conditioned by the current.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniel S. Seara ◽  
Benjamin B. Machta ◽  
Michael P. Murrell

AbstractLiving and non-living active matter consumes energy at the microscopic scale to drive emergent, macroscopic behavior including traveling waves and coherent oscillations. Recent work has characterized non-equilibrium systems by their total energy dissipation, but little has been said about how dissipation manifests in distinct spatiotemporal patterns. We introduce a measure of irreversibility we term the entropy production factor to quantify how time reversal symmetry is broken in field theories across scales. We use this scalar, dimensionless function to characterize a dynamical phase transition in simulations of the Brusselator, a prototypical biochemically motivated non-linear oscillator. We measure the total energetic cost of establishing synchronized biochemical oscillations while simultaneously quantifying the distribution of irreversibility across spatiotemporal frequencies.


Sign in / Sign up

Export Citation Format

Share Document