The Evolution of Travelling Waves in Fractional Order Autocatalysis with Decay. I. Permanent Form Travelling Waves

1998 ◽  
Vol 59 (3) ◽  
pp. 870-899 ◽  
Author(s):  
D. J. Needham ◽  
J. A. Leach ◽  
P. M. McCabe
2016 ◽  
Vol 802 ◽  
pp. 5-36 ◽  
Author(s):  
A. Kalogirou ◽  
D. T. Papageorgiou

The nonlinear stability of immiscible two-fluid Couette flows in the presence of inertia is considered. The interface between the two viscous fluids can support insoluble surfactants and the interplay between the underlying hydrodynamic instabilities and Marangoni effects is explored analytically and computationally in both two and three dimensions. Asymptotic analysis when one of the layers is thin relative to the other yields a coupled system of nonlinear equations describing the spatio-temporal evolution of the interface and its local surfactant concentration. The system is non-local and arises by appropriately matching solutions of the linearised Navier–Stokes equations in the thicker layer to the solution in the thin layer. The scaled models are used to study different physical mechanisms by varying the Reynolds number, the viscosity ratio between the two layers, the total amount of surfactant present initially and a scaled Péclet number measuring diffusion of surfactant along the interface. The linear stability of the underlying flow to two- and three-dimensional disturbances is investigated and a Squire’s type theorem is found to hold when inertia is absent. When inertia is present, three-dimensional disturbances can be more unstable than two-dimensional ones and so Squire’s theorem does not hold. The linear instabilities are followed into the nonlinear regime by solving the evolution equations numerically; this is achieved by implementing highly accurate linearly implicit schemes in time with spectral discretisations in space. Numerical experiments for finite Reynolds numbers indicate that for two-dimensional flows the solutions are mostly nonlinear travelling waves of permanent form, even though these can lose stability via Hopf bifurcations to time-periodic travelling waves. As the length of the system (that is the wavelength of periodic waves) increases, the dynamics becomes more complex and includes time-periodic, quasi-periodic as well as chaotic fluctuations. It is also found that one-dimensional interfacial travelling waves of permanent form can become unstable to spanwise perturbations for a wide range of parameters, producing three-dimensional flows with interfacial profiles that are two-dimensional and travel in the direction of the underlying shear. Nonlinear flows are also computed for parameters which predict linear instability to three-dimensional disturbances but not two-dimensional ones. These are found to have a one-dimensional interface in a rotated frame with respect to the direction of the underlying shear and travel obliquely without changing form.


The propagation of planar reaction-diffusion waves in the isothermal autocatalytic system A + m B → ( m + 1)B, rate kab m , is considered. Attention is paid to the case when the diffusion coefficient of reactant A is much less than that of the autocatalyst; the case when A is completely immobilized is discussed in detail. Permanent-form travelling waves are initiated and their structure is treated. It is found that for sufficiently large values of m this steady wave structure becomes unstable to longitudinal disturbances and an oscillatory wave structure develops. The structure of this propagating oscillatory reaction-diffusion front is also discussed.


The initiation of travelling reaction-diffusion waves in the chemical system governed by the quadratic autocatalytic or branching reaction A + B → 2B (rate k 1 ab) coupled with the decay or termination step B + B → C (rate k 4 b 2 ) is discussed. The system is described by the non-dimensional parameter K - k 4 / k 1 and parameters representing the local initial input of B. It is shown that a travelling wave of permanent form will develop for all K (and no matter how small the initial input of B). Bounds on the solution of the initial-value problem are obtained as well as numerical integrations of the governing equations. The structure of the permanent form travelling waves that arise is discussed in some detail, as well as the asymptotic limits K → 0 and K → ∞. The behaviour of the solution for this problem is compared with solutions found previously for other related simple autocatalytic systems with autocatalyst decay.


2021 ◽  
Vol 16 ◽  
pp. 32
Author(s):  
Hassan Khan ◽  
Rasool Shah ◽  
J.F. Gómez-Aguilar ◽  
Shoaib ◽  
Dumitru Baleanu ◽  
...  

In this paper, we implemented the generalized (G′/G) and extended (G′/G) methods to solve fractional-order biological population models. The fractional-order derivatives are represented by the Caputo operator. The solutions of some illustrative examples are presented to show the validity of the proposed method. First, the transformation is used to reduce the given problem into ordinary differential equations. The ordinary differential equation is than solve by using modified (G′/G) method. Different families of traveling waves solutions are constructed to explain the different physical behavior of the targeted problems. Three important solutions, hyperbolic, rational and periodic, are investigated by using the proposed techniques. The obtained solutions within different classes have provided effective information about the targeted physical procedures. In conclusion, the present techniques are considered the best tools to analyze different families of solutions for any fractional-order problem.


Sign in / Sign up

Export Citation Format

Share Document