Forest management and soil respiration: Implications for carbon sequestration

2008 ◽  
Vol 16 (NA) ◽  
pp. 93-111 ◽  
Author(s):  
Yuanying Peng ◽  
Sean C. Thomas ◽  
Dalung Tian

It is recognized that human activities, such as fossil fuel burning, land-use change, and forest harvesting at a large scale, have resulted in the increase of greenhouse gases in the atmosphere since the onset of the industrial revolution. The increasing amounts of greenhouse gases, particularly CO2 in the atmosphere, is believed to have induced climate change and global warming. With the ability to remove CO2 from the atmosphere through photosynthesis, forests play a critical role in the carbon cycle and carbon sequestration at both global and local scales. It is necessary to understand the relationship between forest soil carbon dynamics and carbon sequestration capacity, and the impact of forest management practices on soil CO2 efflux for sustainable carbon management in forest ecosystems. This paper reviews a number of current issues related to (1) carbon allocation, (2) soil respiration, and (3) carbon sequestration in the forest ecosystems through forest management strategies. The contribution made by forests and forest management in sequestrating carbon to reduce the CO2 concentration level in the atmosphere is now well recognized. The overall carbon cycle, carbon allocation of the above- and belowground compartments of the forests, soil carbon storage and soil respiration in forest ecosystems and impacts of forest management practices on soil respiration are described. The potential influences of forest soils on the buildup of atmospheric carbon are reviewed.

2021 ◽  
Author(s):  
Lin Xu ◽  
Yongjun Shi ◽  
Wanjie Lv ◽  
Zhengwen Niu ◽  
Ning Yuan ◽  
...  

<p>Forest ecosystem has a high carbon sequestration capacity and plays a crucial role in maintaining global carbon balance and climate change. Phytolith-occluded carbon (PhytOC), a promising long-term biogeochemical carbon sequestration mechanism, has attracted more attentions in the global carbon cycle and the regulation of atmospheric CO<sub>2</sub>. Therefore, it is of practical significance to investigate the PhytOC accumulation in forest ecosystems. Previous studies have mostly focused on the estimation of the content and storage of PhytOC, while there were still few studies on how the management practices affect the PhytOC content. Here, this study focused on the effects of four management practices (compound fertilization, silicon fertilization, cut and control) on the increase of phytolith and PhytOC in Moso bamboo forests. We found that silicon fertilization had a greater potential to significantly promote the capacity of carbon sequestration in Moso bamboo forests. this finding positively corresponds recent studies that the application of silicon fertilizers (e.g., biochar) increase the Si uptake<strong><sup>1</sup></strong> to promote phytolith accumulation and its PhytOC sequestration in the plant-soil system<strong><sup>2</sup></strong>. Of course, the above-mentioned document<strong><sup>2</sup></strong> also had their own shortcomings, i.e., the experimental research time was not long, lacking long-term follow-up trial and the bamboo forest parts were also limited, so that the test results lack certain reliability. We have set up a long-term experiment plot to study the effects of silicon fertilizer on the formation and stability of phytolith and PhytOC in Moso bamboo forests. But anyway, different forest management practices, especially the application of high-efficiency silicon-rich fertilizers<strong><sup>1</sup></strong>, may be an effective way to increase the phytolith and PhytOC storage in forest ecosystems, and thereby improve the long-term CO<sub>2 </sub>sequestration capacity of forest ecosystems. Research in this study provides a good "forest plan" to achieve their national voluntary emission reduction commitments and achieves carbon neutrality goals for all over the world.</p><p>Refences:</p><p><sup>1</sup>Li et al., 2019. Plant and soil, 438(1-2), pp.187-203.</p><p><sup>2</sup>Huang et al., 2020, Science of The Total Environment, 715, p.136846.</p>


2021 ◽  
Author(s):  
Minttu Havu ◽  
Liisa Kulmala ◽  
Pasi Kolari ◽  
Timo Vesala ◽  
Anu Riikonen ◽  
...  

Abstract. Cities have become increasingly interested in reducing their greenhouse gas emissions, and increasing carbon sequestration and storage in urban vegetation and soil as part of their climate mitigation actions. However, most of our knowledge on biogenic carbon cycle is based on data and models from forested ecosystems even though urban nature and microclimate are very different to those in natural or forested ecosystems. There is a need for modelling tools that can correctly consider temporal variations of urban carbon cycle and take the urban specific conditions into account. The main aims of this study are to examine the carbon sequestration potential of two commonly used street tree species (Tilia x vulgaris and Alnus glutinosa) and their soils by taking into account the complexity of urban conditions, and evaluate urban land surface model SUEWS and soil carbon model Yasso15 in simulating carbon sequestration of these street tree plantings at different temporal scales (diurnal, monthly and annual). SUEWS provides the urban microclimate, and photosynthesis and respiration of street trees whereas the soil carbon storage is estimated with Yasso. Both models were run for 2002–2016 and within this period the model performances were evaluated against transpiration estimated from sap flow, soil carbon content and soil moisture measurements from two street tree sites located in Helsinki, Finland. The models were able to capture the variability in urban carbon cycle due to changes in environmental conditions and tree species. SUEWS simulated the stomatal control and transpiration well (RMSE < 0.31 mm h−1) and was able to produce correct soil moisture in the street soil (nRMSE < 0.23). Yasso was able to simulate the strong decline in initial carbon content but later overestimated respiration and thus underestimated carbon stock slightly (MBE > −5.42 kg C m−2). Over the study period, soil respiration dominated the carbon exchange over carbon sequestration, due to the high initial carbon loss from the soil after the street construction. However, the street tree plantings turned into a modest sink of carbon from the atmosphere on annual scale as the tree and soil respiration approximately balanced photosynthesis. The compensation point when street trees plantings turned from annual source to sink was reached faster by Alnus trees after 12 years, while by Tilia trees after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 949
Author(s):  
Lucas Clay ◽  
Marzieh Motallebi ◽  
Bo Song

South Carolina (SC) has a variety of different forest types, and they all have potential to sequester a certain amount of carbon. Private forest landowners control a significant portion of the overall forestland in SC, and their management efforts can maintain or improve forest carbon stocks. Currently, the second largest carbon market in the world is the California Carbon Market, which gives a monetary value to sequestered carbon. One carbon credit is equal to one metric ton of carbon and is currently worth around $15.00. Forest management plans are geared toward increasing carbon sequestration over time. This study aims to educate forest landowners about various forest management practices that contribute to increasing carbon stocks by looking at various forest types and locations in SC and their current and projected carbon stocks. Forest Inventory Analysis (FIA) data were utilized in the Forest Vegetation Simulator (FVS) to project carbon sequestration for 100 years for 130 plots. A variety of management practices were employed to see the variance in carbon sequestration. Results showed that carbon sequestration would increase for certain management practices such as thinning and prescribed fire. Clear cutting over time was harmful to sequestration. This data will be beneficial for forest landowners interested in a carbon project and those interested in seeing how different management practices affect carbon sequestration.


2021 ◽  
Author(s):  
Nicolas L. Breil ◽  
Thierry Lamaze ◽  
Vincent Bustillo ◽  
Benoit Coudert ◽  
Solen Queguiner ◽  
...  

&lt;p&gt;Soil plays a major role on carbon cycle, through both carbon stock which is one of the most important carbon terrestrial pool and soil CO&lt;sub&gt;2&lt;/sub&gt; efflux which represents one of the largest amounts of natural carbon emissions. It is known that soil respiration, through roots respiration and carbon mineralisation by microorganisms, is mainly controlled by temperature and humidity but the impact of crop management practices still needs to be investigated. Previous studies have demonstrated that crop management and more particularly reduced or no-tillage (NT) as well as cover-crops (CC) play a key role to mitigate soil respiration and increase soil organic carbon (SOC) content, but the impacts of the synergy of these practices are still unclear. Our study aims at better understanding the effect of sustainable agriculture through agroecological crop management practices on soil carbon dynamics.&lt;/p&gt;&lt;p&gt;Soil respiration was measured in south-west of France on two distinct sites, CAS in 2018 and ABA in 2019, characterized by different initial soil carbon content, 106.9 % higher in CAS than in ABA. Each site included two joint maize fields using agroecological (NT and CC, named Agroeco) and conventional (tillage and bare soil, named Conv) practises. Agroeco have been settled for 12 and 19 years at CAS and ABA, respectively, at the time of experiment. Soil respiration chamber as well as temperature and moisture sensors were used to collect data twice a month, while pedoclimatic variables were monitored continuously on each field. Soil samples were collected in the fields before the experiment to define SOC and nutrient content as well as physical properties, through the entire soil profile.&lt;/p&gt;&lt;p&gt;Mean soil respiration rate was higher on ABA-Agroeco (0.86&amp;#160;g CO&lt;sub&gt;2&lt;/sub&gt;&amp;#160;m&lt;sup&gt;-&lt;/sup&gt;&amp;#178;&amp;#160;h&lt;sup&gt;-1&lt;/sup&gt;) than on ABA-Conv (0.50&amp;#160;g CO&lt;sub&gt;2&lt;/sub&gt;&amp;#160;m&lt;sup&gt;-&lt;/sup&gt;&amp;#178;&amp;#160;h&lt;sup&gt;-1&lt;/sup&gt;) and was significantly correlated with soil temperature and humidity at Conv and only with soil temperature at Agroeco. Similar relations were found at CAS but with lower soil respiration rates. SOC concentration for ABA in the top 0-15&amp;#160;cm was higher at Agroeco (13.4&amp;#160;g&amp;#160;kg&lt;sup&gt;-1&lt;/sup&gt;) than at Conv (8.0&amp;#160;g&amp;#160;kg&lt;sup&gt;-1&lt;/sup&gt;) but little difference was found at CAS where SOC was high. These results suggest that soil respiration rates depend less on soil humidity on Agroeco than on Conv because agroecology management practices both keep more water at the surface and store additional soil organic carbon in soils, inducing more activity through the carbon cycle with higher soil respiration rate. For both sites, agroecological practices induced higher SOC content compared to conventional ones, however, only for ABA site, soil respiration was higher for agroecological field while SOC content was higher. This study supports the idea that agroecological management practices can increase carbon cycle activity by increasing soil carbon stocks thus allowing the mitigation of greenhouse gases emissions and climate change, even by increasing soil CO&lt;sub&gt;2&lt;/sub&gt; efflux.&lt;/p&gt;


2017 ◽  
Vol 5 (2) ◽  
pp. 132-140 ◽  
Author(s):  
Kewat Sanjay Kumar ◽  

Mechanisms governing carbon stabilization in soils have received a great deal of attention in recent years due to their relevance in the global carbon cycle. Two thirds of the global terrestrial organic C stocks in ecosystems are stored in below ground components as terrestrial carbon pools in soils. Furthermore, mean residence time of soil organic carbon pools have slowest turnover rates in terrestrial ecosystems and thus there is vast potential to sequester atmospheric CO2 in soil ecosystems. Depending upon soil management practices it can be served as source or sink for atmospheric CO2. Sustainable management systems and practices such as conservation agriculture, agroforestry and application of biochar are emerging and promising tools for soil carbon sequestration. Increasing soil carbon storage in a system simultaneously improves the soil health by increase in infiltration rate, soil biota and fertility, nutrient cycling and decrease in soil erosion process, soil compaction and C emissions. Henceforth, it is vital to scientifically explore the mechanisms governing C flux in soils which is poorly understood in different ecosystems under anthropogenic interventions making soil as a potential sink for atmospheric CO2 to mitigate climate change. Henceforth, present paper aims to review basic mechanism governing carbon stabilization in soils and new practices and technological developments in agricultural and forest sciences for C sequestration in terrestrial soil ecosystems.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Hong Wei ◽  
Xiuling Man

The change of litter input can affect soil respiration (Rs) by influencing the availability of soil organic carbon and nutrients, regulating soil microenvironments, thus resulting in a profound influence on soil carbon cycle of the forest ecosystem. We conducted an aboveground litterfall manipulation experiment in different-aged Betula platyphylla forests (25-, 40- and 61-year-old) of the permafrost region, located in the northeast of China, during May to October in 2018, with each stand treated with doubling litter (litter addition, DL), litter exclusion (no-litter, NL) and control litter (CK). Our results indicated that Rs decreased under NL treatment compared with CK treatment. The effect size lessened with the increase in the stand age; the greatest reduction was found for young Betula platyphylla forest (24.46% for 25-year-old stand) and tended to stabilize with the growth of forest with the reduction of 15.65% and 15.23% for 40-and 61- year-old stands, respectively. Meanwhile, under DL treatment, Rs increased by 27.38%, 23.83% and 23.58% on 25-, 40- and 61-year-old stands, respectively. Our results also showed that the increase caused by DL treatment was larger than the reduction caused by NL treatment, leading to a priming effect, especially on 40- and 61-year-old stands. The change in litter input was the principal factor affecting the change of Rs under litter manipulation. The soil temperature was also a main factor affecting the contribution rate of litter to Rs of different-aged stands, which had a significant positive exponential correlation with Rs. This suggests that there is a significant relationship between litter and Rs, which consequently influences the soil carbon cycle in Betula platyphylla forests of the permafrost region, Northeast China. Our finding indicated the increased litter enhanced the Rs in Betula platyphylla forest, which may consequently increase the carbon emission in a warming climate in the future. It is of great importance for future forest management in the permafrost region, Northeast China.


CERNE ◽  
2013 ◽  
Vol 19 (3) ◽  
pp. 509-515 ◽  
Author(s):  
Luciano Farinha Watzlawick ◽  
Marcos Vinicius Winckler Caldeira ◽  
Tiago de Oliveira Godinho ◽  
Rafaelo Balbinot ◽  
Jonathan William Trautenmüller

This study aimed to estimate biomass and organic carbon in stands of Pinus taeda L. at different ages (14, 16, 19, 21, 22, 23 and 32 years) and located in the municipality of General Carneiro (PR). In order to estimate biomass and organic carbon in different tree components (needles, live branches, dead branches, bark and stem wood), the destructive quantification method was used in which seven trees from each age category were randomly sampled across the stand. Stocks of biomass and organic carbon were found to vary between the different age categories, mainly as a result of existing dissimilarities between ages in association with forest management practices such as thinning, pruning and tree density per hectare.


Sign in / Sign up

Export Citation Format

Share Document