scholarly journals Impaired handgrip exercise-induced brachial artery flow-mediated dilation in young obese males

2016 ◽  
Vol 41 (5) ◽  
pp. 528-537 ◽  
Author(s):  
David J. Slattery ◽  
Troy J.R. Stuckless ◽  
Trevor J. King ◽  
Kyra E. Pyke

Flow mediated dilation (FMD) stimulated by different shear stress stimulus profiles may recruit distinct transduction mechanisms, and provide distinct information regarding endothelial function. The purpose of this study was to determine whether obesity influences brachial artery FMD differently depending on the shear stress profile used for FMD assessment. The FMD response to a brief, intermediate, and sustained shear stress profile was assessed in obese (n = 9) and lean (n = 19) young men as follows: brief stimulus, standard reactive hyperemia (RH) following a 5 min forearm occlusion (5 min RH); intermediate stimulus, RH following a 15 min forearm occlusion (15 min RH); sustained stimulus, 10 min of handgrip exercise (HGEX). Brachial artery diameter and mean shear stress were assessed using echo and Doppler ultrasound, respectively, during each FMD test. There was no group difference in HGEX shear stress (p = 0.390); however, the obese group had a lower HGEX-FMD (5.2 ± 3.0% versus 11.5 ± 4.4%, p < 0.001). There was no group difference in 5 min RH-FMD (p = 0.466) or 15 min RH-FMD (p = 0.181); however, the shear stress stimulus was larger in the obese group. After normalization to the stimulus the 15 min RH-FMD (p = 0.002), but not the 5 min RH-FMD (p = 0.118) was lower in the obese group. These data suggest that obesity may have a more pronounced impact on the endothelium’s ability to respond to prolonged increases in shear stress.

2004 ◽  
Vol 97 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Kyra E. Pyke ◽  
Erin M. Dwyer ◽  
Michael E. Tschakovsky

The reactive hyperemia test (RHtest) evokes a transient increase in shear stress as a stimulus for endothelial-dependent flow-mediated vasodilation (EDFMD). We developed a noninvasive method to create controlled elevations in brachial artery (BA) shear rate (SR, estimate of shear stress), controlled hyperemia test (CHtest), and assessed the impact of this vs. the RHtest approach on EDFMD. Eight healthy subjects participated in two trials of each test on 3 separate days. For the CHtest, SR was step increased from 8 to 50 s−1, created by controlled release of BA compression during forearm heating. For the RHtest, transient increases in SR were achieved after 5 min of forearm occlusion. BA diameter and blood flow velocity (ultrasound) were measured upstream of compression and occlusion sites. Both tests elicited significant dilation (RHtest: 6.33 ± 3.12%; CHtest: 3.00 ± 1.05%). The CHtest resulted in 1) reduced between-subject SR and EDFMD variability vs. the RHtest [SR coefficient of variation (CV): 4.9% vs. 36.6%; EDFMD CV: 36.16% vs. 51.80%] and 2) virtual elimination of the impact of BA diameter on the peak EDFMD response (peak EDFMD vs. baseline diameter for RHtest, r2 = 0.64, P < 0.01, vs. CHtest, r2 = 0.14, P < 0.01). Normalization of the RHtest EDFMD response to the magnitude of the SR stimulus eliminated test differences in between-subject response variability. Reductions in trial-to-trial and day-to-day SR variability with the CHtest did not reduce EDFMD variability. Between-subject SR variability contributes to EDFMD variability with the RHtest. SR controls with the CHtest or RHtest response normalization are essential for examining EDFMD between groups differing in baseline arterial diameter.


2013 ◽  
Vol 38 (5) ◽  
pp. 498-506 ◽  
Author(s):  
Ingrid C. Szijgyarto ◽  
Trevor J. King ◽  
Jennifer Ku ◽  
Veronica J. Poitras ◽  
Brendon J. Gurd ◽  
...  

Acute mental stress can impair brachial artery (BA) flow-mediated dilation (FMD) in response to reactive hyperemia (RH) induced increases in shear stress. Handgrip exercise (HGEX) is emerging as a useful tool to increase shear stress for FMD assessment; however, the impact of acute mental stress on HGEX-FMD is unknown. The purpose of this study was to determine whether acute mental stress attenuates RH- and HGEX-induced BA-FMD to a similar extent. In 2 counterbalanced visits, 16 healthy males (19–27 years of age) performed RH-FMD or HGEX-FMD tests after a counting control task (prestress FMD) and a speech and arithmetic stress task (poststress FMD). BA diameter and mean blood velocity were assessed with echo and Doppler ultrasound, respectively. Shear stress was estimated using shear rate (SR = BA blood velocity/BA diameter). Mean arterial pressure (MAP), heart rate (HR), and salivary cortisol were used to assess stress reactivity. Results are expressed as mean ± SE. The stress task elevated MAP (Δ24.0 ± 2.6 mm Hg) and HR (Δ15.5 ± 1.9 beats·min–1), but not cortisol (prestress vs. poststress: 4.4 ± 0.7 nmol·L–1 vs. 4.7 ± 0.7 nmol·L–1; p = 0.625). There was no difference between the pre- and poststress SR stimulus for RH (p = 0.115) or HGEX (p = 0.664). RH-FMD decreased from 5.2% ± 0.6% prestress to 4.1% ± 0.5% poststress (p = 0.071); however, stress did not attenuate HGEX-FMD (prestress vs. poststress: 4.1% ± 0.6% vs. 5.3% ± 0.6%; p = 0.154). The pre- to poststress change in FMD was significantly different in the RH-FMD vs. the HGEX-FMD test (–1.1% ± 0.6% vs. +1.1% ± 0.8%; p = 0.015). In conclusion, acute mental stress appears to have a disparate impact on FMD stimulated by RH vs. HGEX induced increases in shear stress.


2008 ◽  
Vol 105 (1) ◽  
pp. 282-292 ◽  
Author(s):  
K. E. Pyke ◽  
J. A. Hartnett ◽  
M. E. Tschakovsky

The purpose of this study was to determine the dynamic characteristics of brachial artery dilation in response to step increases in shear stress [flow-mediated dilation (FMD)]. Brachial artery diameter (BAD) and mean blood velocity (MBV) (Doppler ultrasound) were obtained in 15 healthy subjects. Step increases in MBV at two shear stimulus magnitudes were investigated: large (L; maximal MBV attainable), and small (S; MBV at 50% of the large step). Increase in shear rate (estimate of shear stress: MBV/BAD) was 76.8 ± 15.6 s−1 for L and 41.4 ± 8.7 s−1 for S. The peak %FMD was 14.5 ± 3.8% for L and 5.7 ± 2.1% for S ( P < 0.001). Both the L (all subjects) and the S step trials (12 of 15 subjects) elicited a biphasic diameter response with a fast initial phase (phase I) followed by a slower final phase. Relative contribution of phase I to total FMD when two phases occurred was not sensitive to shear rate magnitude ( r2 = 0.003, slope P = 0.775). Parameters quantifying the dynamics of the FMD response [time delay (TD), time constant (τ)] were also not sensitive to shear rate magnitude for both phases (phase I: TD r2 = 0.03, slope P = 0.376, τ r2 = 0.04, slope P = 0.261; final phase: TD r2 = 0.07, slope P = 0.169, τ r2 = 0.07, slope P = 0.996). These data support the existence of two distinct mechanisms, or sets of mechanisms, in the human conduit artery FMD response that are proportionally sensitive to shear stimulus magnitude and whose dynamic response is not sensitive to shear stimulus magnitude.


2000 ◽  
Vol 99 (4) ◽  
pp. 261-267 ◽  
Author(s):  
Karen L. BERRY ◽  
R. Andrew P. SKYRME-JONES ◽  
Ian T. MEREDITH

Non-invasive ultrasound techniques to assess flow-mediated vasodilation (FMD) are frequently used to assess arterial endothelial vasodilator function. However, the range of normal values varies considerably, possibly due to differences in methodological factors. We sought to determine the effect of occlusion cuff position on the time course and magnitude of brachial artery blood flow and flow-mediated dilation. Twelve healthy subjects underwent measurements of forearm blood flow using venous occlusion plethysmography (VOP) before and after 5 min of susprasystolic cuff inflation, using two randomly assigned occlusion cuff positions (upper arm and forearm). An additional 16 subjects underwent two brachial ultrasound studies, using the two cuff positions, to assess the extent and time course of changes in brachial artery diameter and blood flow. Maximum increase in blood flow (peak reactive hyperaemia), measured by VOP, occurred immediately upon each cuff deflation, but was greater after upper arm compared with forearm arterial occlusion (33.1±3.1 versus 22.8±2.2 ml/min per forearm tissue, P = 0.001). Maximal brachial artery FMD was significantly greater following upper arm occlusion (9.0±1.2%, mean±S.E.M.) compared with forearm occlusion (5.9±0.7%, P = 0.01). The time course of the change in brachial artery diameter was affected differently in response to each protocol. The time to peak dilation following upper arm occlusion was delayed by 22 s compared with forearm occlusion. Occlusion cuff position is thus a powerful determinant of peak reactive hyperaemia, volume repaid and the extent and time course of brachial artery FMD. Positioning the cuff on the upper arm produces a greater FMD. These results highlight the need for comparisons between FMD studies to be made with care.


2004 ◽  
Vol 286 (1) ◽  
pp. H442-H448 ◽  
Author(s):  
Andrew C. Betik ◽  
Victoria B. Luckham ◽  
Richard L. Hughson

Different magnitudes and durations of postocclusion reactive hyperemia were achieved by occluding different volumes of tissue with and without ischemic exercise to test the hypotheses that flow-mediated dilation (FMD) of the brachial artery would depend on the increase in peak flow rate or shear stress and that the position of the occlusion cuff would affect the response. The brachial artery FMD response was observed by high-frequency ultrasound imaging with curve fitting to minimize the effects of random measurement error in eight healthy, young, nonsmoking men. Reactive hyperemia was graded by 5-min occlusion distal to the measurement site at the wrist and the forearm and proximal to the site in the upper arm. Flow was further increased by exercise during occlusion at the wrist and forearm positions. For the two wrist occlusion conditions, flow increased eightfold and FMD was only 1 to 2% ( P > 0.05). After the forearm and upper arm occlusions, blood flow was almost identical but FMD after forearm occlusions was 3.4% ( P < 0.05), whereas it was significantly greater (6.6%, P < 0.05) and more prolonged after proximal occlusion. Forearm occlusion plus exercise caused a greater and more prolonged increase in blood flow, yet FMD (7.0%) was qualitatively and quantitatively similar to that after proximal occlusion. Overall, the magnitude of FMD was significantly correlated with peak forearm blood flow ( r = 0.59, P < 0.001), peak shear rate ( r = 0.49, P < 0.002), and total 5-min reactive hyperemia ( r = 0.52, P < 0.001). The prolonged FMD after upper arm occlusion suggests that the mechanism for FMD differs with occlusion cuff position.


1997 ◽  
Vol 2 (2) ◽  
pp. 87-92 ◽  
Author(s):  
Akimi Uehata ◽  
Eric H Lieberman ◽  
Marie D Gerhard ◽  
Todd J Anderson ◽  
Peter Ganz ◽  
...  

Coronary atherosclerosis is characterized by an early loss of endothelium-dependent vasodilation. However, the methods of assessing coronary endothelial function are invasive and difficult to repeat over time. Recently, a noninvasive ultrasound method has been widely used to measure flow-mediated dilation in the brachial artery as a surrogate test for endothelial function. We seek to further validate this method of measuring vascular function. The brachial artery diameters and blood flow of 20 normal volunteers (10 males and 10 females) were measured using high resolution (7.5 MHz) ultrasound and strain gauge plethysmography. Flow-mediated endothelium-dependent vasodilation was measured in the brachial artery during reactive hyperemia after 5 minutes of cuff occlusion in the upper arm. The brachial artery diameter increased maximally by 9.7 ± 4.3% from baseline at 1 min after cuff release and blood flow increased by 1002 ± 376%. Five min of cuff occlusion was sufficient to achieve 97 ± 6% of maximal brachial artery dilation and degree of dilation was not different whether the cuff was inflated proximally or distally to the image site. The intraobserver variability in measuring brachial diameters was 2.9 % and the variability of the hyperemic response was 1.4%. In young, healthy men and women, the baseline brachial artery diameter was the only factor that was predictive of the flow-mediated vasodilation response. The brachial noninvasive technique has been further validated by the determination of flow-mediated dilation. This method of assessing endothelial function may help to determine the importance of vasodilator dysfunction as a risk factor in the development of atherosclerosis.


2011 ◽  
Vol 121 (8) ◽  
pp. 355-365 ◽  
Author(s):  
Tracey L. Weissgerber ◽  
Gregory A. L. Davies ◽  
Michael E. Tschakovsky

Whether brachial artery FMD (flow-mediated dilation) is altered in pregnancy by 28–35 weeks compared with non-pregnant women remains controversial. The controversy may be due to limitations of previous studies that include failing to: (i) test non-pregnant controls in the mid-late luteal phase, (ii) account for effects of pregnancy on the dilatory shear stimulus, (iii) account for physical activity or (iv) control for inter-individual variation in the time to peak FMD. In the present study, brachial artery FMD was measured in 17 active and eight sedentary pregnant women (34.1±1.6 weeks of gestation), and in 19 active and 11 sedentary non-pregnant women (mid-late luteal phase). Decreased vascular tone secondary to increased shear stress contributes minimally to pregnancy-induced increases in baseline brachial artery diameter, as shear stress removal during distal cuff inflation in pregnant women did not reduce diameter to baseline levels observed in non-pregnant controls. Neither the shear stimulus nor the percentage FMD was affected by pregnancy or regular exercise. Continuous diameter measurements are required to control for delayed peak dilation during pregnancy (57±15 compared with 46±15 s; P=0.012), as post-release diameter measured at 60 or 55–65 s post-release underestimated FMD to a greater extent in non-pregnant than in pregnant women.


2019 ◽  
Vol 317 (5) ◽  
pp. H991-H1001 ◽  
Author(s):  
Joshua C. Tremblay ◽  
Geoff B. Coombs ◽  
Connor A. Howe ◽  
Gustavo A. Vizcardo-Galindo ◽  
Rómulo J. Figueroa-Mujíca ◽  
...  

Excessive erythrocytosis [EE; hemoglobin concentration (Hb) ≥ 21 g/dL in adult men] is a maladaptive high-altitude pathology associated with increased cardiovascular risk and reduced reactive hyperemia flow-mediated dilation (FMD); however, whether a similar impairment occurs in response to more commonly encountered sustained increases in shear stress [sustained stimulus (SS)-FMD] over a range of overlapping stimuli is unknown. We characterized SS-FMD in response to handgrip exercise in Andeans with and without EE in Cerro de Pasco, Peru (4,330 m). Andean highlanders with EE ( n = 17, Hb = 23.2 ± 1.2 g/dL) and without EE ( n = 23, Hb = 18.7 ± 1.9 g/dL) performed 3 min of rhythmic handgrip exercise at 20, 35, and 50% of maximum voluntary contraction (MVC). Duplex ultrasound was used to continuously record blood velocity and diameter in the brachial artery, and blood viscosity was measured to accurately calculate shear stress. Although baseline shear stress did not differ, Andeans with EE had 22% lower shear stress than Andeans without at 50% MVC ( P = 0.004). At 35 and 50% MVC, SS-FMD was 2.1 ± 2.0 and 2.8 ± 2.7% in Andeans with EE compared with 4.1 ± 3.4 and 7.5 ± 4.5% in those without ( P = 0.048 and P < 0.001). The stimulus-response slope (∆shear stress vs. ∆diameter) was lower in Andeans with EE compared with Andeans without ( P = 0.028). This slope was inversely related to Hb in Andeans with EE ( r2 = 0.396, P = 0.007). A reduced SS-FMD in response to small muscle mass exercise in Andeans with EE indicates a generalized reduction in endothelial sensitivity to shear stress, which may contribute to increased cardiovascular risk in this population. NEW & NOTEWORTHY High-altitude excessive erythrocytosis (EE; hemoglobin concentration ≥ 21 g/dL) is a maladaptation to chronic hypoxia exposure and is associated with increased cardiovascular risk. We examined flow-mediated dilation (FMD) in response to sustained elevations in shear stress achieved using progressive handgrip exercise [sustained stimulus (SS)-FMD] in Andean highlanders with and without EE at 4,330 m. Andeans with EE demonstrated lower SS-FMD compared with those without. Heightened hemoglobin concentration was related to lower SS-FMD in Andeans with EE.


2015 ◽  
Vol 119 (8) ◽  
pp. 858-864 ◽  
Author(s):  
Ceri L. Atkinson ◽  
Howard H. Carter ◽  
Louise H. Naylor ◽  
Ellen A. Dawson ◽  
Petra Marusic ◽  
...  

While the impact of changes in blood flow and shear stress on artery function are well documented, the acute effects of increases in arterial pressure are less well described in humans. The aim of this study was to assess the effect of 30 min of elevated blood pressure, in the absence of changes in shear stress or sympathetic nervous system (SNS) activation, on conduit artery diameter. Ten healthy male subjects undertook three sessions of 30 min unilateral handgrip exercise at 5, 10, and 15% of maximal voluntary contractile (MVC) strength. Brachial artery shear rate and blood flow profiles were measured simultaneously during exercise in the active and contralateral resting arms. Bilateral brachial artery diameter was simultaneously assessed before and immediately postexercise. In a second experiment, six subjects repeated the 15% MVC condition while continuous vascular measurements were collected during muscle sympathetic nerve activity (MSNA) assessment using peroneal microneurography. We found that unilateral handgrip exercise at 5, 10, and 15% MVC strength induced stepwise elevations in blood pressure ( P < 0.01, Δmean arterial pressure: 7.06 ± 2.44, 8.50 ± 2.80, and 18.35 ± 3.52 mmHg, P < 0.01). Whereas stepwise increases were evident in shear rate in the exercising arm ( P < 0.001), no changes were apparent in the nonexercising limb ( P = 0.42). Brachial artery diameter increased in the exercising arm ( P = 0.02), but significantly decreased in the nonexercising arm ( P = 0.03). At 15% MVC, changes in diameter were significantly different between arms (interaction effect: P = 0.01), whereas this level of exertion produced no significant changes in MSNA. We conclude that acute increases in transmural pressure, independent of shear rate and changes in SNS activation, reduce arterial caliber in normotensive humans in vivo. These changes in diameter were mitigated by exercise-induced elevations in shear rate in the active limb.


2011 ◽  
Vol 300 (3) ◽  
pp. H1078-H1089 ◽  
Author(s):  
K. E. Pyke ◽  
F. Jazuli

Reactive hyperemia (RH) creates an uncontrolled, transient increase in brachial artery (BA) shear stress (SS) for flow-mediated dilation (FMD) assessment. In contrast, handgrip exercise (HGEX) can create similar, sustained SS increases over repeated trials. The purpose of this study was to examine the impact of repeated SS elevation via RH or HGEX and the relationship between RH and HGEX %FMD. BA diameter and blood velocity were assessed with echo and Doppler ultrasound in 20 healthy subjects. Visit A consisted of four 6-min HGEX trials (HGEX trials 1–4) at the intensity required to achieve a shear rate (SR = mean blood velocity/BA diameter; an estimate of SS) of 65 s−1. Visit B consisted of four RH trials (RH trials 1–4). The RH SR area under the curve (AUC) was higher in trial 1 versus trial 3 and trial 4 ( P = 0.019 and 0.047). The HGEX mean SR was similar across trials (mean SR = 66.1 ± 5.8 s−1, P = 0.152). There were no differences in %FMD across trials or tests (RH trial 1: 6.9 ± 3.5%, trial 2: 6.9 ± 2.3%, trial 3: 7.1 ± 3.5%, and trial 4: 7.0 ± 2.8%; HGEX trial 1: 7.3 ± 3.6%, trial 2: 7.0 ± 3.6%, trial 3: 6.5 ± 3.5%, and trial 4: 6.8 ± 2.9%, P = 0.913). No relationship between subject's RH %FMD and HGEX %FMD was detected ( r2 = 0.12, P = 0.137). However, with response normalization, a relationship emerged (RH %FMD/SR AUC vs. HGEX %FMD/mean SR, r2 = 0.44, P = 0.002). In conclusion, with repeat trials, there were no systematic changes in RH or HGEX %FMD. The relationship between normalized RH and HGEX %FMD suggests that endothelial responses to different SS profiles provide related information regarding endothelial function.


Sign in / Sign up

Export Citation Format

Share Document