scholarly journals Changes in the distribution of nesting Arctic seaducks are not strongly related to variation in polar bear presence

2020 ◽  
Vol 6 (2) ◽  
pp. 114-123
Author(s):  
Cody J. Dey ◽  
Christina A.D. Semeniuk ◽  
Samuel A. Iverson ◽  
H. Grant Gilchrist

Contemporary climate change is predicted to expose some species to altered predation regimes. Losses of Arctic sea ice are causing polar bears to increasingly forage on colonial seaduck eggs in lieu of ice-based hunting of marine mammals. Although polar bear predation of bird eggs has now been widely documented, it is unclear whether this change in predator behavior is having population-level consequences for Arctic breeding birds. In this study, we tested whether changes in the number of common eider nests on 76 islands in Hudson Strait, Canada, were related to variation in polar bear presence. We found that polar bear sign detected during eider breeding surveys was strongly correlated with spatial patterns of polar bears observed during aerial surveys. However, changes in eider nest count did not appear to be clearly related to polar bear sign at either the island scale or the island-cluster scale. This results of this study, therefore, suggest that the spatial overlap between eiders and polar bears varies across the landscape, but patterns of polar bear spatial variation do not seem to have driven large-scale redistribution of nesting common eiders.

2021 ◽  
Author(s):  
David Lipson ◽  
Kim Reasor ◽  
Kååre Sikuaq Erickson

<p>In this project we analyze artwork and recorded statements of 5<sup>th</sup> grade students from the community of Utqiaġvik, Alaska, who participated in a science-art outreach activity. The team consisted of a scientist (Lipson), an artist (Reasor) and an outreach specialist (Erickson) of Inupiat heritage from a village in Alaska. We worked with four 5th grade classes of about 25 students each at Fred Ipalook Elementary. The predominantly Inupiat people of Utqiaġvik are among those who will be most impacted by climate change and the loss of Arctic sea ice in the near future. Subsistence hunting of marine mammals associated with sea ice is central to the Inupiat way of life. Furthermore, their coastal homes and infrastructure are increasingly subject to damage from increased wave action on ice-free Beaufort and Chukchi Seas. While the people of this region are among the most directly vulnerable to climate change, the teachers reported that the subject is not generally covered in the elementary school curriculum.</p><p>The scientist and the local outreach specialist gave a short presentation about sea ice and climate change in the Arctic, with emphasis on local impacts to hunting and infrastructure. We then showed the students a large poster of historical and projected sea ice decline, and asked the students to help us fill in the white space beneath the lines. The artist led the children in making small paintings that represent things that are important to their lives in Utqiaġvik (they were encouraged to paint animals, but they were free to do whatever they wanted). We returned to the class later that week and had each student briefly introduce themselves and their painting, and place it on the large graph of sea ice decline, which included the dire predictions of the RCP8.5 scenario. Then we added the more hopeful RCP2.6 scenario to end on a positive note.</p><p>Common themes expressed in the students’ artwork included subsistence hunting, other aspects of traditional Inupiat culture, nature and family. Modern themes such as sports and Pokémon were also common. The students reacted to the topic of climate change with pictures of whales, polar bears and other animals, and captions such as “Save the world/ice/animals.” There were several paintings showing unsuccessful hunts for whales or seals. Some students displayed an understanding of ecosystem science in their recorded statements. For example, a student who painted the sun and another who painted a krill both succinctly described energy flow in food webs that support the production of whales (for example, “I drew krill because without krill there wouldn’t be whales”). Some of the students described the consequences of sea ice loss to local wildlife with devastating succinctness (sea ice is disappearing and polar bears will go extinct). The overall sense was that the children had a strong grasp of the potential consequences of climate change to their region and way of life.</p>


2016 ◽  
Vol 12 (12) ◽  
pp. 20160556 ◽  
Author(s):  
Eric V. Regehr ◽  
Kristin L. Laidre ◽  
H. Resit Akçakaya ◽  
Steven C. Amstrup ◽  
Todd C. Atwood ◽  
...  

Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979–2014 (median −1.26 days year −1 ). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35–41 years) were 0.71 (range 0.20–0.95), 0.07 (range 0–0.35) and less than 0.01 (range 0–0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions.


2021 ◽  
Author(s):  
Stephen Howell ◽  
Mike Brady ◽  
Alexander Komarov

<p>As the Arctic’s sea ice extent continues to decline, remote sensing observations are becoming even more vital for the monitoring and understanding of this process.  Recently, the sea ice community has entered a new era of synthetic aperture radar (SAR) satellites operating at C-band with the launch of Sentinel-1A in 2014, Sentinel-1B in 2016 and the RADARSAT Constellation Mission (RCM) in 2019. These missions represent a collection of 5 spaceborne SAR sensors that together can routinely cover Arctic sea ice with a high spatial resolution (20-90 m) but also with a high temporal resolution (1-7 days) typically associated with passive microwave sensors. Here, we used ~28,000 SAR image pairs from Sentinel-1AB together with ~15,000 SAR images pairs from RCM to generate high spatiotemporal large-scale sea ice motion products across the pan-Arctic domain for 2020. The combined Sentinel-1AB and RCM sea ice motion product provides almost complete 7-day coverage over the entire pan-Arctic domain that also includes the pole-hole. Compared to the National Snow and Ice Data Center (NSIDC) Polar Pathfinder and Ocean and Sea Ice-Satellite Application Facility (OSI-SAF) sea ice motion products, ice speed was found to be faster with the Senintel-1AB and RCM product which is attributed to the higher spatial resolution of SAR imagery. More sea ice motion vectors were detected from the Sentinel-1AB and RCM product in during the summer months and within the narrow channels and inlets compared to the NSIDC Polar Pathfinder and OSI-SAF sea ice motion products. Overall, our results demonstrate that sea ice geophysical variables across the pan-Arctic domain can now be retrieved from multi-sensor SAR images at both high spatial and temporal resolution.</p>


2021 ◽  
Author(s):  
Ines Höschel ◽  
Dörthe Handorf ◽  
Christoph Jacobi ◽  
Johannes Quaas

<p>The loss of Arctic sea ice as a consequence of global warming is changing the forcing of the atmospheric large-scale circulation.  Areas not covered with sea ice anymore may act as an additional heat source.  Associated changes in Rossby wave propagation can initiate tropospheric and stratospheric pathways of Arctic - Mid-latitude linkages.  These pathways have the potential to impact on the large-scale energy transport into the Arctic.  On the other hand, studies show that the large-scale circulation contributes to Arctic warming by poleward transport of moist static energy. This presentation shows results from research within the Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3” funded by the Deutsche Forschungsgemeinschaft.  Using the ERA interim and ERA5 reanalyses the meridional moist static energy transport during high ice and low ice periods is compared.  The investigation discriminates between contributions from planetary and synoptic scale.  Special emphasis is put on the seasonality of the modulations of the large-scale energy transport.</p>


2020 ◽  
Vol 33 (10) ◽  
pp. 4009-4025
Author(s):  
Shuyu Zhang ◽  
Thian Yew Gan ◽  
Andrew B. G. Bush

AbstractUnder global warming, Arctic sea ice has declined significantly in recent decades, with years of extremely low sea ice occurring more frequently. Recent studies suggest that teleconnections with large-scale climate patterns could induce the observed extreme sea ice loss. In this study, a probabilistic analysis of Arctic sea ice was conducted using quantile regression analysis with covariates, including time and climate indices. From temporal trends at quantile levels from 0.01 to 0.99, Arctic sea ice shows statistically significant decreases over all quantile levels, although of different magnitudes at different quantiles. At the representative extreme quantile levels of the 5th and 95th percentiles, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Pacific–North American pattern (PNA) have more significant influence on Arctic sea ice than El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO). Positive AO as well as positive NAO contribute to low winter sea ice, and a positive PNA contributes to low summer Arctic sea ice. If, in addition to these conditions, there is concurrently positive AMO and PDO, the sea ice decrease is amplified. Teleconnections between Arctic sea ice and the climate patterns were demonstrated through a composite analysis of the climate variables. The anomalously strong anticyclonic circulation during the years of positive AO, NAO, and PNA promotes more sea ice export through Fram Strait, resulting in excessive sea ice loss. The probabilistic analyses of the teleconnections between the Arctic sea ice and climate patterns confirm the crucial role that the climate patterns and their combinations play in overall sea ice reduction, but particularly for the low and high quantiles of sea ice concentration.


2015 ◽  
Vol 28 (14) ◽  
pp. 5477-5509 ◽  
Author(s):  
Mitchell Bushuk ◽  
Dimitrios Giannakis ◽  
Andrew J. Majda

Abstract Arctic sea ice reemergence is a phenomenon in which spring sea ice anomalies are positively correlated with fall anomalies, despite a loss of correlation over the intervening summer months. This work employs a novel data analysis algorithm for high-dimensional multivariate datasets, coupled nonlinear Laplacian spectral analysis (NLSA), to investigate the regional and temporal aspects of this reemergence phenomenon. Coupled NLSA modes of variability of sea ice concentration (SIC), sea surface temperature (SST), and sea level pressure (SLP) are studied in the Arctic sector of a comprehensive climate model and in observations. It is found that low-dimensional families of NLSA modes are able to efficiently reproduce the prominent lagged correlation features of the raw sea ice data. In both the model and observations, these families provide an SST–sea ice reemergence mechanism, in which melt season (spring) sea ice anomalies are imprinted as SST anomalies and stored over the summer months, allowing for sea ice anomalies of the same sign to reappear in the growth season (fall). The ice anomalies of each family exhibit clear phase relationships between the Barents–Kara Seas, the Labrador Sea, and the Bering Sea, three regions that compose the majority of Arctic sea ice variability. These regional phase relationships in sea ice have a natural explanation via the SLP patterns of each family, which closely resemble the Arctic Oscillation and the Arctic dipole anomaly. These SLP patterns, along with their associated geostrophic winds and surface air temperature advection, provide a large-scale teleconnection between different regions of sea ice variability. Moreover, the SLP patterns suggest another plausible ice reemergence mechanism, via their winter-to-winter regime persistence.


2016 ◽  
Vol 29 (21) ◽  
pp. 7831-7849 ◽  
Author(s):  
Hans W. Chen ◽  
Fuqing Zhang ◽  
Richard B. Alley

Abstract The significance and robustness of the link between Arctic sea ice loss and changes in midlatitude weather patterns is investigated through a series of model simulations from the Community Atmosphere Model, version 5.3, with systematically perturbed sea ice cover in the Arctic. Using a large ensemble of 10 sea ice scenarios and 550 simulations, it is found that prescribed Arctic sea ice anomalies produce statistically significant changes for certain metrics of the midlatitude circulation but not for others. Furthermore, the significant midlatitude circulation changes do not scale linearly with the sea ice anomalies and are not present in all scenarios, indicating that the remote atmospheric response to reduced Arctic sea ice can be statistically significant under certain conditions but is generally nonrobust. Shifts in the Northern Hemisphere polar jet stream and changes in the meridional extent of upper-level large-scale waves due to the sea ice perturbations are generally small and not clearly distinguished from intrinsic variability. Reduced Arctic sea ice may favor a circulation pattern that resembles the negative phase of the Arctic Oscillation and may increase the risk of cold outbreaks in eastern Asia by almost 50%, but this response is found in only half of the scenarios with negative sea ice anomalies. In eastern North America the frequency of extreme cold events decreases almost linearly with decreasing sea ice cover. This study’s finding of frequent significant anomalies without a robust linear response suggests interactions between variability and persistence in the coupled system, which may contribute to the lack of convergence among studies of Arctic influences on midlatitude circulation.


2017 ◽  
Vol 23 (9) ◽  
pp. 3460-3473 ◽  
Author(s):  
George M. Durner ◽  
David C. Douglas ◽  
Shannon E. Albeke ◽  
John P. Whiteman ◽  
Steven C. Amstrup ◽  
...  

2014 ◽  
Vol 27 (2) ◽  
pp. 527-550 ◽  
Author(s):  
Justin J. Wettstein ◽  
Clara Deser

Abstract Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model, version 3 (CCSM3) ensemble for the period 2000–61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition. September Arctic sea ice extent trends during 2020–59 range from −2.0 × 106 to −5.7 × 106 km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. A similar nearly threefold range (from −7.0 × 103 to −19 × 103 km3) is found for summer sea ice volume trends. Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice–atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.


Sign in / Sign up

Export Citation Format

Share Document