The Robustness of Midlatitude Weather Pattern Changes due to Arctic Sea Ice Loss

2016 ◽  
Vol 29 (21) ◽  
pp. 7831-7849 ◽  
Author(s):  
Hans W. Chen ◽  
Fuqing Zhang ◽  
Richard B. Alley

Abstract The significance and robustness of the link between Arctic sea ice loss and changes in midlatitude weather patterns is investigated through a series of model simulations from the Community Atmosphere Model, version 5.3, with systematically perturbed sea ice cover in the Arctic. Using a large ensemble of 10 sea ice scenarios and 550 simulations, it is found that prescribed Arctic sea ice anomalies produce statistically significant changes for certain metrics of the midlatitude circulation but not for others. Furthermore, the significant midlatitude circulation changes do not scale linearly with the sea ice anomalies and are not present in all scenarios, indicating that the remote atmospheric response to reduced Arctic sea ice can be statistically significant under certain conditions but is generally nonrobust. Shifts in the Northern Hemisphere polar jet stream and changes in the meridional extent of upper-level large-scale waves due to the sea ice perturbations are generally small and not clearly distinguished from intrinsic variability. Reduced Arctic sea ice may favor a circulation pattern that resembles the negative phase of the Arctic Oscillation and may increase the risk of cold outbreaks in eastern Asia by almost 50%, but this response is found in only half of the scenarios with negative sea ice anomalies. In eastern North America the frequency of extreme cold events decreases almost linearly with decreasing sea ice cover. This study’s finding of frequent significant anomalies without a robust linear response suggests interactions between variability and persistence in the coupled system, which may contribute to the lack of convergence among studies of Arctic influences on midlatitude circulation.

2014 ◽  
Vol 27 (2) ◽  
pp. 527-550 ◽  
Author(s):  
Justin J. Wettstein ◽  
Clara Deser

Abstract Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model, version 3 (CCSM3) ensemble for the period 2000–61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition. September Arctic sea ice extent trends during 2020–59 range from −2.0 × 106 to −5.7 × 106 km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. A similar nearly threefold range (from −7.0 × 103 to −19 × 103 km3) is found for summer sea ice volume trends. Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice–atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.


2017 ◽  
Vol 30 (11) ◽  
pp. 3945-3962 ◽  
Author(s):  
James A. Screen

Abstract The loss of Arctic sea ice is already having profound environmental, societal, and ecological impacts locally. A highly uncertain area of scientific research, however, is whether such Arctic change has a tangible effect on weather and climate at lower latitudes. There is emerging evidence that the geographical location of sea ice loss is critically important in determining the large-scale atmospheric circulation response and associated midlatitude impacts. However, such regional dependencies have not been explored in a thorough and systematic manner. To make progress on this issue, this study analyzes ensemble simulations with an atmospheric general circulation model prescribed with sea ice loss separately in nine regions of the Arctic, to elucidate the distinct responses to regional sea ice loss. The results suggest that in some regions, sea ice loss triggers large-scale dynamical responses, whereas in other regions sea ice loss induces only local thermodynamical changes. Sea ice loss in the Barents–Kara Seas is unique in driving a weakening of the stratospheric polar vortex, followed in time by a tropospheric circulation response that resembles the North Atlantic Oscillation. For October–March, the largest spatial-scale responses are driven by sea ice loss in the Barents–Kara Seas and the Sea of Okhotsk; however, different regions assume greater importance in other seasons. The atmosphere responds very differently to regional sea ice losses than to pan-Arctic sea ice loss, and the response to pan-Arctic sea ice loss cannot be obtained by the linear addition of the responses to regional sea ice losses. The results imply that diversity in past studies of the simulated response to Arctic sea ice loss can be partly explained by the different spatial patterns of sea ice loss imposed.


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Mats Granskog ◽  
Philipp Assmy ◽  
Sebastian Gerland ◽  
Gunnar Spreen ◽  
Harald Steen ◽  
...  

Scientists embarked on a 6-month expedition in the Arctic Ocean to study the thinning sea ice cover, improve our understanding of sea ice loss effects, and help predict future changes.


2016 ◽  
Vol 29 (8) ◽  
pp. 2869-2888 ◽  
Author(s):  
Srdjan Dobricic ◽  
Elisabetta Vignati ◽  
Simone Russo

Abstract The ongoing shrinkage of the Arctic sea ice cover is likely linked to the global temperature rise, the pronounced warming in the Arctic, and possibly weather anomalies in the midlatitudes. By evaluating independent components of global atmospheric energy anomalies in winters from 1980 to 2015, the study finds the link between the sea ice melting in the Arctic and the combination of only three well-known atmospheric oscillation patterns approximating observed spatial variations of near-surface temperature trends in winter. The three patterns are the North Atlantic Oscillation (NAO), Scandinavian blocking (SB), and El Niño–Southern Oscillation (ENSO). The first two are directly related to the ongoing sea ice cover shrinkage in the Barents Sea and the hemispheric increase of near-surface temperature. By independent dynamical processes they connect the sea ice melting and related atmospheric perturbations in the Arctic either with the negative phase of the NAO or the negative trend of atmospheric temperatures over the tropical Pacific. The study further shows that the ongoing sea ice melting may often imply the formation of large-scale circulation patterns bringing the recent trend of colder winters in densely populated areas like Europe and North America.


2020 ◽  
Author(s):  
Xavier Levine ◽  
Ivana Cvijanovic ◽  
Pablo Ortega ◽  
Markus Donat

<p>Climate models predict that sea ice cover will shrink--even disappear-- in most regions of the Arctic basin by the end of the century, triggering local and remote responses in the surface climate via atmospheric and oceanic circulation changes. In particular, it has been suggested that seasonal anomalies over Europe and North America in recent years could have been caused by record low Arctic sea ice cover. Despite an intense research effort toward quantifying its effect, the contribution of regional sea ice loss to climate change and its mechanisms of action remain controversial. </p><p>In this study, we prescribe sea ice loss in individual sectors of the Arctic within a climate model, and study its effect on climatic anomalies in the Northern Hemisphere. Using the EC-EARTH3.3 model in its atmospheric-only and fully coupled configuration, and following the PAMIP protocol, sea ice cover is set to either its present day state, or a hypothetical future distribution of reduced sea ice cover in the Arctic. This pan-Arctic sea ice loss experiment is then complemented by 8 regional sea ice loss experiments.</p><p>Comparing those experiments, we assess the contribution of sea ice loss in each region of the Arctic to climate change over Europe, Siberia and North America. We find that sea ice loss in some sectors of the Arctic appears to matter more for Northern Hemisphere climate change than others, even after normalizing for differences in surface cover. Furthermore, the climatic effect of regional sea ice loss is compared to that of a pan-Arctic sea ice loss, whose associated climate anomalies are found to be strikingly different from that expected from a simple linear response to regional sea ice loss. We propose a mechanism for this nonlinear climate response to regional sea ice loss, which considers regional differences in the strength of the thermal inversion over the Arctic, as well as the relative proximity of each Arctic region to features critical for stationary wave genesis (e.g. the Tibetan plateau).</p>


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mats Brockstedt Olsen Huserbråten ◽  
Elena Eriksen ◽  
Harald Gjøsæter ◽  
Frode Vikebø

Abstract The Arctic amplification of global warming is causing the Arctic-Atlantic ice edge to retreat at unprecedented rates. Here we show how variability and change in sea ice cover in the Barents Sea, the largest shelf sea of the Arctic, affect the population dynamics of a keystone species of the ice-associated food web, the polar cod (Boreogadus saida). The data-driven biophysical model of polar cod early life stages assembled here predicts a strong mechanistic link between survival and variation in ice cover and temperature, suggesting imminent recruitment collapse should the observed ice-reduction and heating continue. Backtracking of drifting eggs and larvae from observations also demonstrates a northward retreat of one of two clearly defined spawning assemblages, possibly in response to warming. With annual to decadal ice-predictions under development the mechanistic physical-biological links presented here represent a powerful tool for making long-term predictions for the propagation of polar cod stocks.


2011 ◽  
Vol 57 (202) ◽  
pp. 231-237 ◽  
Author(s):  
David Marsan ◽  
Jérôme Weiss ◽  
Jean-Philippe Métaxian ◽  
Jacques Grangeon ◽  
Pierre-François Roux ◽  
...  

AbstractWe report the detection of bursts of low-frequency waves, typically f = 0.025 Hz, on horizontal channels of broadband seismometers deployed on the Arctic sea-ice cover during the DAMOCLES (Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies) experiment in spring 2007. These bursts have amplitudes well above the ambient ice swell and a lower frequency content. Their typical duration is of the order of minutes. They occur at irregular times, with periods of relative quietness alternating with periods of strong activity. A significant correlation between the rate of burst occurrences and the ice-cover deformation at the ∼400 km scale centered on the seismic network suggests that these bursts are caused by remote, episodic deformation involving shearing across regional-scale leads. This observation opens the possibility of complementing satellite measurements of ice-cover deformation, by providing a much more precise temporal sampling, hence a better characterization of the processes involved during these deformation events.


2012 ◽  
Vol 25 (5) ◽  
pp. 1431-1452 ◽  
Author(s):  
Alexandra Jahn ◽  
Kara Sterling ◽  
Marika M. Holland ◽  
Jennifer E. Kay ◽  
James A. Maslanik ◽  
...  

To establish how well the new Community Climate System Model, version 4 (CCSM4) simulates the properties of the Arctic sea ice and ocean, results from six CCSM4 twentieth-century ensemble simulations are compared here with the available data. It is found that the CCSM4 simulations capture most of the important climatological features of the Arctic sea ice and ocean state well, among them the sea ice thickness distribution, fraction of multiyear sea ice, and sea ice edge. The strongest bias exists in the simulated spring-to-fall sea ice motion field, the location of the Beaufort Gyre, and the temperature of the deep Arctic Ocean (below 250 m), which are caused by deficiencies in the simulation of the Arctic sea level pressure field and the lack of deep-water formation on the Arctic shelves. The observed decrease in the sea ice extent and the multiyear ice cover is well captured by the CCSM4. It is important to note, however, that the temporal evolution of the simulated Arctic sea ice cover over the satellite era is strongly influenced by internal variability. For example, while one ensemble member shows an even larger decrease in the sea ice extent over 1981–2005 than that observed, two ensemble members show no statistically significant trend over the same period. It is therefore important to compare the observed sea ice extent trend not just with the ensemble mean or a multimodel ensemble mean, but also with individual ensemble members, because of the strong imprint of internal variability on these relatively short trends.


2012 ◽  
Vol 6 (4) ◽  
pp. 2653-2687 ◽  
Author(s):  
A. E. West ◽  
A. B. Keen ◽  
H. T. Hewitt

Abstract. The fully-coupled climate model HadGEM1 produces one of the most accurate simulations of the historical record of Arctic sea ice seen in the IPCC AR4 multi-model ensemble. In this study, we examine projections of sea ice decline out to 2030, produced by two ensembles of HadGEM1 with natural and anthropogenic forcings included. These ensembles project a significant slowing of the rate of ice loss to occur after 2010, with some integrations even simulating a small increase in ice area. We use an energy budget of the Arctic to examine the causes of this slowdown. A negative feedback effect by which rapid reductions in ice thickness north of Greenland reduce ice export is found to play a major role. A slight reduction in ocean-to-ice heat flux in the relevant period, caused by changes in the MOC and subpolar gyre in some integrations, is also found to play a part. Finally, we assess the likelihood of a slowdown occurring in the real world due to these causes.


Sign in / Sign up

Export Citation Format

Share Document