scholarly journals The summer soundscape of a shallow-water estuary used by beluga whales in the western Canadian Arctic

2020 ◽  
Vol 6 (4) ◽  
pp. 361-383 ◽  
Author(s):  
William D. Halliday ◽  
Kevin Scharffenberg ◽  
Dustin Whalen ◽  
Shannon A. MacPhee ◽  
Lisa L. Loseto ◽  
...  

The soundscape is an important habitat component for marine animals. In the Arctic, marine conditions are changing rapidly due to sea ice loss and increased anthropogenic activities such as shipping, which will influence the soundscape. Here, we assess the contributors to the summer soundscape in the shallow waters of the Mackenzie River estuary within the Tarium Niryutait Marine Protected Area in the western Canadian Arctic, a core summering habitat for beluga whales (Delphinapterus leucas Pallas, 1776). We collected passive acoustic data during the summer over four years, and assessed the influence of physical variables, beluga whale vocalizations, and boat noise on sound pressure levels in three frequency bands (low: 0.2–1 kHz; medium: 1–10 kHz; high: 10–48 kHz) to quantify the soundscape. Wind speed, wave height, beluga vocalizations, and boat noise were all large contributors to the soundscape in various frequency bands. The soundscape varied to a lesser degree between sites, time of day, and with tide height, but remained relatively constant between years. This study is the first detailed description of a shallow summer soundscape in the western Canadian Arctic, an important habitat for beluga whales, and can be used as a baseline to monitor future changes during this season.

ARCTIC ◽  
2019 ◽  
Vol 72 (4) ◽  
pp. 337-346 ◽  
Author(s):  
William D. Halliday ◽  
Kevin Scharffenberg ◽  
Shannon MacPhee ◽  
R. Casey Hilliard ◽  
Xavier Mouy ◽  
...  

Vessel traffic negatively affects marine mammals by causing behavioural disturbance, acoustic masking, contamination (i.e., oil spills), and ship strikes. Few studies have examined the effects of vessels on marine mammals in the Arctic, but beluga whales appear to be especially sensitive to vessel traffic. We examine how the vocalizations of belugas are impacted by vessel traffic in the Tarium Niryutait Marine Protected Area in the Mackenzie River estuary of the western Canadian Arctic. Between one and four acoustic recorders were deployed between June and August each year between 2015 and 2018 near the only shipping channel at this site. We examined beluga vocalizations from acoustic recordings over four summers and assessed how the distance to the nearest vessel passing the acoustic recorder affected the number of vocalizations. Beluga vocalizations within the range of the acoustic recorder decreased significantly when vessels were within 5 km of the acoustic recorder. This result suggests either that belugas are avoiding the vessel or that they reduce their vocalization in response to vessel traffic. Future work is needed to assess exactly how belugas are reacting to vessel traffic in this area and what the long-term consequences of these reactions are. Management measures for reducing these impacts must be carefully considered, especially since these vessels are very restricted in where they can travel, and many of the vessels are necessary for the livelihoods of local communities.


2013 ◽  
Vol 142-143 ◽  
pp. 317-328 ◽  
Author(s):  
Jean-Pierre W. Desforges ◽  
Peter S. Ross ◽  
Neil Dangerfield ◽  
Vince P. Palace ◽  
Michael Whiticar ◽  
...  

2019 ◽  
Vol 97 (1) ◽  
pp. 72-80 ◽  
Author(s):  
W.D. Halliday ◽  
M.K. Pine ◽  
S.J. Insley ◽  
R.N. Soares ◽  
P. Kortsalo ◽  
...  

The Arctic marine environment is changing rapidly through a combination of sea ice loss and increased anthropogenic activity. Given these changes can affect marine animals in a variety of ways, understanding the spatial and temporal distributions of Arctic marine animals is imperative. We use passive acoustic monitoring to examine the presence of marine mammals near Ulukhaktok, Northwest Territories, Canada, from October 2016 to April 2017. We documented bowhead whale (Balaena mysticetus Linnaeus, 1758) and beluga whale (Delphinapterus leucas (Pallas, 1776)) vocalizations later into the autumn than expected, and we recorded bowhead whales in early April. We recorded ringed seal (Pusa hispida (Schreber, 1775)) vocalizations throughout our deployment, with higher vocal activity than in other studies and with peak vocal activity in January. We recorded bearded seals (Erignathus barbatus (Erxleben, 1777)) throughout the deployment, with peak vocal activity in February. We recorded lower bearded seal vocal activity than other studies, and almost no vocal activity near the beginning of the spring breeding season. Both seal species vocalized more when ice concentration was high. These patterns in vocal activity document the presence of each species at this site over autumn and winter and are a useful comparison for future monitoring.


2017 ◽  
Vol 13 (11) ◽  
pp. 20170433 ◽  
Author(s):  
David J. Yurkowski ◽  
Nigel E. Hussey ◽  
Aaron T. Fisk ◽  
Kendra L. Imrie ◽  
Ross F. Tallman ◽  
...  

Asymmetrical intraguild predation (AIGP), which combines both predation and competition between predator species, is pervasive in nature with relative strengths varying by prey availability. But with species redistributions associated with climate change, the response by endemic predators within an AIGP context to changing biotic–abiotic conditions over time (i.e. seasonal and decadal) has yet to be quantified. Furthermore, little is known on AIGP dynamics in ecosystems undergoing rapid directional change such as the Arctic. Here, we investigate the flexibility of AIGP among two predators in the same trophic guild: beluga ( Delphinapterus leucas ) and Greenland halibut ( Reinhardtius hippoglossoides ), by season and over 30 years in Cumberland Sound—a system where forage fish capelin ( Mallotus villosus ) have recently become more available. Using stable isotopes, we illustrate different predator responses to temporal shifts in forage fish availability. On a seasonal cycle, beluga consumed less Greenland halibut and increased consumption of forage fish during summer, contrasting a constant consumption rate of forage fish by Greenland halibut year-round leading to decreased AIGP pressure between predators. Over a decadal scale (1982–2012), annual consumption of forage fish by beluga increased with a concomitant decline in the consumption of Greenland halibut, thereby indicating decreased AIGP pressure between predators in concordance with increased forage fish availability. The long-term changes of AIGP pressure between endemic predators illustrated here highlights climate-driven environmental alterations to interspecific intraguild interactions in the Arctic.


Polar Biology ◽  
2016 ◽  
Vol 39 (12) ◽  
pp. 2319-2334 ◽  
Author(s):  
Claire A. Hornby ◽  
Carie Hoover ◽  
John Iacozza ◽  
David G. Barber ◽  
Lisa L. Loseto

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257054
Author(s):  
Marie J. Zahn ◽  
Kristin L. Laidre ◽  
Peter Stilz ◽  
Marianne H. Rasmussen ◽  
Jens C. Koblitz

Echolocation signals of wild beluga whales (Delphinapterus leucas) were recorded in 2013 using a vertical, linear 16-hydrophone array at two locations in the pack ice of Baffin Bay, West Greenland. Individual whales were localized for 4:42 minutes of 1:04 hours of recordings. Clicks centered on the recording equipment (i.e. on-axis clicks) were isolated to calculate sonar parameters. We report the first sonar beam estimate of in situ recordings of wild belugas with an average -3 dB asymmetrical vertical beam width of 5.4°, showing a wider ventral beam. This narrow beam width is consistent with estimates from captive belugas; however, our results indicate that beluga sonar beams may not be symmetrical and may differ in wild and captive contexts. The mean apparent source level for on-axis clicks was 212 dB pp re 1 μPa and whales were shown to vertically scan the array from 120 meters distance. Our findings support the hypothesis that highly directional sonar beams and high source levels are an evolutionary adaptation for Arctic odontocetes to reduce unwanted surface echoes from sea ice (i.e., acoustic clutter) and effectively navigate through leads in the pack ice (e.g., find breathing holes). These results provide the first baseline beluga sonar metrics from free-ranging animals using a hydrophone array and are important for acoustic programs throughout the Arctic, particularly for acoustic classification between belugas and narwhals (Monodon monoceros).


Sign in / Sign up

Export Citation Format

Share Document