Two threatened coexisting indigenous conifer species in the dry Afromontane forests of Ethiopia are associated with distinct arbuscular mycorrhizal fungal communities

2006 ◽  
Vol 84 (10) ◽  
pp. 1617-1627 ◽  
Author(s):  
Tesfaye Wubet ◽  
Michael Weiß ◽  
Ingrid Kottke ◽  
Franz Oberwinkler

The molecular diversity of arbuscular mycorrhizal (AM) fungi colonizing roots of Podocarpus falcatus (Thunb.) R.Br. (Podocarpaceae) in the dry Afromontane forests of Ethiopia was investigated. The nuclear gene coding for small subunit ribosomal RNA (nucSSU rDNA) was amplified from colonized roots of P. falcatus, cloned, and sequenced using AM fungal specific primers. Phylogenetic analyses revealed that the glomeromycetous sequences from mycorrhizae of P. falcatus belong to the Glomeraceae, Diversisporaceae, and Archaeosporaceae. Overall, 16 Glomus , three Diversispora , and one Archaeospora sequence types were identified. These sequence types were distinct and only distantly related to sequences from the available defined species. The composition of the AM fungal communities differed significantly between the two study sites. Comparison of the AM fungal community composition of P. falcatus with that of previously investigated Juniperus procera Hochst. ex Endl. (Cupressaceae), the only coexisting indigenous conifer tree species in the dry Afromontane forest ecosystem, yields that the two tree species are colonized by distinct AM fungal communities. This suggests that fungal communities are host plant specific in the natural stand conditions. Therefore, in the conservation of these endangered species and restoration of the degraded ecosystem, the use of appropriate mycorrhizal fungi should be taken into account in future projects.

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2468
Author(s):  
Carlos H. Rodríguez-León ◽  
Clara P. Peña-Venegas ◽  
Armando Sterling ◽  
Herminton Muñoz-Ramirez ◽  
Yeny R. Virguez-Díaz

Natural restoration of ecosystems includes the restoration of plant-microbial associations; however, few studies had documented those changes in tropical ecosystems. With the aim to contribute to understand soil microbial changes in a natural regrowth succession of degraded pastures that were left for natural restoration, we studied changes in arbuscular mycorrhizal (AM) fungal communities. Arbuscular mycorrhizal fungi (AMF) establish a mutualistic symbiosis with plants, improving plant nutrition. Amplification of the small subunit rRNA with specific primers and subsequent Illumina sequencing were used to search soil-borne AM fungal communities in four successional natural regrowth stages in two landscapes (hill and mountain) with soil differences, located in the Andean-Amazonian transition. Molecular results corroborated the results obtained previously by spores-dependent approaches. More abundance and virtual taxa of AMF exist in the soil of degraded pastures and early natural regrowth stages than in old-growth or mature forest soils. Although changes in AM fungal communities occurred similarly over the natural regrowth chronosequence, differences in soil texture between landscapes was an important soil feature differentiating AM fungal community composition and richness. Changes in soil-borne AM fungal communities reflect some signals of environmental restoration that had not been described before, such as the reduction of Glomus dominance and the increase of Paraglomus representativeness in the AM fungal community during the natural regrowth chronosequence.


Phytotaxa ◽  
2020 ◽  
Vol 468 (1) ◽  
pp. 62-74
Author(s):  
ALBERTO GUILLÉN ◽  
FERNANDO JAVIER SERRANO-TAMAY ◽  
JUAN BAUTISTA PERIS ◽  
ISABEL ARRILLAGA

A new arbuscular mycorrhizal fungal species, Diversispora valentina, is described and illustrated. In the field, this species is associated with marine dunes located along the Mediterranean coast in eastern Spain. Spores of D. valentina occurred in sporocarps, in clusters, and singly in the soil or inside the roots of Ammophila arenaria (Poaceae), Elymus farctus (Poaceae), Otanthus maritimus (Asteraceae), and Echinophora spinosa (Apiaceae) in the six locations studied. A single-species culture of D. valentina was obtained using Trifolium repens as a host plant. The small subunit internal transcribed spacer and large subunit (SSU-ITS1-5.8S-ITS2-LSU) nrDNA sequences place the new species in the genus Diversispora and suggest that it differs from any previously described species. The novelty of this species is supported by morphological, molecular, and phylogenetic analyses.


2011 ◽  
Vol 77 (14) ◽  
pp. 4770-4777 ◽  
Author(s):  
Irena Maček ◽  
Alex J. Dumbrell ◽  
Michaela Nelson ◽  
Alastair H. Fitter ◽  
Dominik Vodnik ◽  
...  

ABSTRACTThe processes responsible for producing and maintaining the diversity of natural arbuscular mycorrhizal (AM) fungal communities remain largely unknown. We used natural CO2springs (mofettes), which create hypoxic soil environments, to determine whether a long-term, directional, abiotic selection pressure could change AM fungal community structure and drive the selection of particular AM fungal phylotypes. We explored whether those phylotypes that appear exclusively in hypoxic soils are local specialists or widespread generalists able to tolerate a range of soil conditions. AM fungal community composition was characterized by cloning, restriction fragment length polymorphism typing, and the sequencing of small subunit rRNA genes from roots of four plant species growing at high (hypoxic) and low (control) geological CO2exposure. We found significant levels of AM fungal community turnover (β diversity) between soil types and the numerical dominance of two AM fungal phylotypes in hypoxic soils. Our results strongly suggest that direct environmental selection acting on AM fungi is a major factor regulating AM fungal communities and their phylogeographic patterns. Consequently, some AM fungi are more strongly associated with local variations in the soil environment than with their host plant's distribution.


2018 ◽  
Author(s):  
Michala L. Phillips ◽  
S□ren E. Weber ◽  
Lela V. Andrews ◽  
Emma L. Aronson ◽  
Michael F. Allen ◽  
...  

AbstractAbstract Fungal community composition in the Anthropocene is driven by rapid changes in environmental conditions caused by human activities. This study examines the relative importance of two global change drivers – atmospheric nitrogen (N) deposition and annual grass invasion – on structuring fungal communities in a California chaparral ecosystem, with emphasis on arbuscular mycorrhizal fungi. We used molecular markers, functional groupings, generalized linear statistics and joint distribution modeling, to examine how environmental variables structure taxonomic and functional composition of fungal communities. Invasion of a chaparral ecosystem decreased richness and relative abundance of non-AMF symbionts and rhizophilic AMF (e.g. Glomeraceae) as well as the proportion of edaphophilic AMF (e.g. Gigasporaceae). We found increased richness and the proportion of rhizophilic and edaphophilic AMF with increasing soil NO3. Our findings suggest that invasive persistence may decrease the presence of multiple soil symbionts that native species depend on for pathogen protection and increased access to soil resources.


2021 ◽  
Author(s):  
RAUL ALEXANDER ARANGUREN AROCA ◽  
Samuele Voyron ◽  
Fabrizio Ungaro ◽  
Julio Cañón ◽  
Erica Lumini

Abstract Changes in soil fungal community caused by land use have not been sufficiently studied in South-American Andosols, considered globally as important food production areas. This study analyzed 26 soil samples of Andosols collected from locations devoted to conservation, agriculture and mining activities in the southeastern region of Antioquia, Colombia, to establish differences between fungal communities as indicators of the degree of soil perturbation. The study developed a novel heminested PCR with primers SSUmCf Mix, ITS4 and fITS7 to assess Arbuscular Mycorrhizal Fungi detection in a Illumina MiSeq metabarcoding on nuclear ribosomal ITS2 region. A non-metric multidimensional scaling allowed exploring driver factors of fungal community changes, while fitted Dirichlet-multinomial models and PERMANOVA tests allowed identifying the correlations between alpha diversity indexes and community dissimilarities, as well as the significance of land use effects on fungal community composition. Furthermore, response ratios were determined to assess effect size by land use over relevant taxa. Results suggest a good coverage of fungal diversity with a detection of 10,529 high-quality ITS2 sequences belonged to phylum Glomeromycota. The analysis shows strong correlations of Shannon and Fisher indexes with dissimilarities on fungal communities among land uses (r=0.94), related to variations in temperature, air humidity and organic matter contents that lead to significant responses in abundances of relevant orders (such as Wallemiales and Trichosporonales). The study highlights the rich fungal biodiversity of the tropical Andosols, their specific sensitivities to environmental perturbation factors, and the useful range of a metabarcoding approach to characterize soil fungal communities.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Wang ◽  
Yin Wang

Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliataL. Raf.) and red tangerine (Citrus reticulataBlanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus ofGlomusSensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering withGlomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
James D’Souza ◽  
Bernard Felinov Rodrigues

Seasonal dynamics of arbuscular mycorrhizal (AM) fungal community composition in three common mangrove plant species, namely, Acanthus ilicifolius, Excoecaria agallocha, and Rhizophora mucronata, from two sites in Goa, India, were investigated. In all three species variation in AM fungal spore density was observed. Maximum spore density and AM species richness were recorded in the premonsoon season, while minimum spore density and richness were observed during monsoon season at both sites. A total of 11 AM fungal species representing five genera were recorded. Acaulospora laevis was recorded in all seasons at both sites. Multivariate analysis revealed that season and host coaffected AM spore density and species richness with the former having greater influence than the latter.


2021 ◽  
Vol 35 (2) ◽  
pp. 269-275
Author(s):  
Camila Abarca ◽  
Marcelo Daniel Barrera ◽  
Marta Cabello ◽  
Fabricio Valdés ◽  
María Silvana Velázquez

Sign in / Sign up

Export Citation Format

Share Document