Seed dispersal in the cycad Zamia pumila in Florida

1989 ◽  
Vol 67 (7) ◽  
pp. 2066-2070 ◽  
Author(s):  
William Tang

Seed dispersal of the herbaceous cycad Zamia pumila was studied in the rockland pine forests of southeast Florida. Dispersal activity was found to occur over 6 months and was concentrated in two periods: after seed ripening and prior to seed germination. Seed mass and pulp-to-seed ratios were positively correlated with dispersal success at one study site. Seed shadows were generally asymmetrical in direction, with seeds tending to be deposited under nearby shrubs. Seed germination and seedling establishment is higher in shade than in sun, suggesting that the lower light intensities under shrubs are safe sites for seeds and seedlings.

Author(s):  
M. Celeste Díaz Vélez ◽  
Ana E. Ferreras ◽  
Valeria Paiaro

Abstract Animal dispersers are essential for many non-native plants since they facilitate seed movement and might promote seed germination and seedling establishment, thereby increasing their chances of invasion. This chapter reviews the published literature on seed dispersal of non-native plant species by native and/or non-native animals. The following questions are addressed: (i) Are interactions between non-native plants and their animal dispersers evenly studied worldwide? (ii) Which are the distinctive traits (i.e. geographical origin, life form, dispersal strategy and propagule traits) of non-native plants that are dispersed by animals? (iii) Which are the most studied groups of dispersers of non-native plants around the world? (iv) Does the literature provide evidence for the Invasional Meltdown Hypothesis (non-native plant-non-native disperser facilitation)? (v) What is the role of animal dispersers at different stages of the non-native plant regeneration process? Our dataset of 204 articles indicates that geographical distribution of the studies was highly heterogeneous among continents, with the highest number coming from North America and the lowest from Asia and Central America. Most of the non-native plants involved in dispersal studies were woody species from Asia with fleshy fruits dispersed by endozoochory. More than the half of the animal dispersal agents noted were birds, followed by mammals, ants and reptiles. The dominance of bird-dispersal interactions over other animal groups was consistent across geographical regions. Although most of the studies involved only native dispersers, interactions among non-native species were detected, providing support for the existence of invasional meltdown processes. Of the total number of reviewed articles reporting seed removal, 74% evaluated seed dispersal, but only a few studies included seed germination (35.3%), seedling establishment (5.4%) or seed predation (23.5%). Finally, we discuss some research biases and directions for future studies in the area.


Author(s):  
M. Celeste Díaz Vélez ◽  
◽  
Ana E. Ferreras ◽  
Valeria Paiaro ◽  
◽  
...  

Animal dispersers are essential for many non-native plants since they facilitate seed movement and might promote seed germination and seedling establishment, thereby increasing their chances of invasion. This chapter reviews the published literature on seed dispersal of non-native plant species by native and/or non-native animals. The following questions are addressed: (i) Are interactions between non-native plants and their animal dispersers evenly studied worldwide? (ii) Which are the distinctive traits (i.e. geographical origin, life form, dispersal strategy and propagule traits) of non-native plants that are dispersed by animals? (iii) Which are the most studied groups of dispersers of non-native plants around the world? (iv) Does the literature provide evidence for the Invasional Meltdown Hypothesis (non-native plant-non-native disperser facilitation)? (v) What is the role of animal dispersers at different stages of the non-native plant regeneration process? Our dataset of 204 articles indicates that geographical distribution of the studies was highly heterogeneous among continents, with the highest number coming from North America and the lowest from Asia and Central America. Most of the non-native plants involved in dispersal studies were woody species from Asia with fleshy fruits dispersed by endozoochory. More than the half of the animal dispersal agents noted were birds, followed by mammals, ants and reptiles. The dominance of bird-dispersal interactions over other animal groups was consistent across geographical regions. Although most of the studies involved only native dispersers, interactions among non-native species were detected, providing support for the existence of invasional meltdown processes. Of the total number of reviewed articles reporting seed removal, 74% evaluated seed dispersal, but only a few studies included seed germination (35.3%), seedling establishment (5.4%) or seed predation (23.5%). Finally, we discuss some research biases and directions for future studies in the area.


2021 ◽  
Vol 12 ◽  
Author(s):  
Minghui Wang ◽  
Sijie Yi ◽  
Mengyao Ju ◽  
Xianfeng Yi

Although various seed-marking methods have been developed for seed dispersal, it remains difficult to track the actual patterns of seed dispersal and seedling recruitment. Thus, new labeling methods that accurately track seedling establishment along with seed movement would help us better understand seed dispersal. Here, we developed a new nondestructive method using 15N xylem injection to track seed dispersal and seedling recruitment based on the enriched isotopic signals in the mature seeds. Our results first showed that xylem injection of 15N successfully enriched 15N both in the acorns and seedlings of Quercus variabilis. By marking acorns and seedlings with 15N stable isotopes, we successfully tracked seedlings established from acorns dispersed by seed-eating animals in the field. Our xylem 15N injection caused little alteration to seeds and showed no significant effects on seed selection by seed-eating animals as well as seed germination and seedling establishment, verifying the validity of the 15N xylem injection method to track seedling establishment. Our xylem 15N injection method is expected to be a powerful tool for tracking seed dispersal and seedling recruitment mediated by seed-eating animals in seed dispersal ecology.


2021 ◽  
Vol 22 (15) ◽  
pp. 8172
Author(s):  
Orarat Ginsawaeng ◽  
Michal Gorka ◽  
Alexander Erban ◽  
Carolin Heise ◽  
Franziska Brueckner ◽  
...  

During seed germination, desiccation tolerance is lost in the radicle with progressing radicle protrusion and seedling establishment. This process is accompanied by comprehensive changes in the metabolome and proteome. Germination of Arabidopsis seeds was investigated over 72 h with special focus on the heat-stable proteome including late embryogenesis abundant (LEA) proteins together with changes in primary metabolites. Six metabolites in dry seeds known to be important for seed longevity decreased during germination and seedling establishment, while all other metabolites increased simultaneously with activation of growth and development. Thermo-stable proteins were associated with a multitude of biological processes. In the heat-stable proteome, a relatively similar proportion of fully ordered and fully intrinsically disordered proteins (IDP) was discovered. Highly disordered proteins were found to be associated with functional categories development, protein, RNA and stress. As expected, the majority of LEA proteins decreased during germination and seedling establishment. However, four germination-specific dehydrins were identified, not present in dry seeds. A network analysis of proteins, metabolites and amino acids generated during the course of germination revealed a highly connected LEA protein network.


Author(s):  
Astrid de Oliveira Wittmann ◽  
Aline Lopes ◽  
Auristela Dos Santos Conserva ◽  
Florian Wittmann ◽  
Maria T. F. Piedade

Sign in / Sign up

Export Citation Format

Share Document