Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac

1991 ◽  
Vol 69 (3) ◽  
pp. 447-460 ◽  
Author(s):  
S. G. Mansfield ◽  
L. G. Briarty ◽  
S. Erni

Arabidopsis thaliana has a seven-celled eight-nucleate megagametophyte of the Polygonum type; each cell type displays a different form of structural specialization. The egg apparatus cells are highly polarized; the egg has a large micropylar vacuole and chalazally sited nucleus, whereas the opposite is true for the synergids. At the chalazal region of the egg apparatus cells there are no cell wall boundaries, although their plasmalemmas are in intimate contact. The common wall between the two synergids is thin and irregular and contains plasmodesmatal connections. The synergid cytoplasm is rich in organelles; profiles of rough endoplasmic reticulum appear in masses of parallel stacked cisternae, and large accumulations of mitochondria occur adjacent to the filiform apparatus. The egg cell cytoplasm is quiescent; ribosome concentration and frequencies of dictyosomes and endoplasmic reticulum are noticeably lower and plastids are poorly differentiated. The central cell is long and vacuolate with a large diploid nucleus; fusion of the polar nuclei occurs prior to embryo sac maturity. The cytoplasm contains numerous starch-containing plastids accumulated in a shell around the nucleus. A high ribosome concentration and the absence of vacuoles and dictyosomes typifies the antipodal cell cytoplasm. All antipodal cells are interconnected by plasmodesmata as well as being connected to the nucellus and central cell. Key words: Arabidopsis, embryo sac, embryogenesis, cell specializations, stereology.

2014 ◽  
Vol 66 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Gönül Algan ◽  
H. Nurhan Bakar

In this study, ultrastructural organization of cells in the mature embryo sac of natural tetraploid <em>Trifolium pratense</em> L. was investigated. The mature embryo sac of this plant contains an egg cell with two synergids at the micropylar end, and a central cell with two polar nuclei. The ultrastructure of these cells agrees with what is known for most angiosperms studied with the electron microscope. The egg cell is a large and highly vacuolate cell, partially surrounded by a wall. Much of the cytoplasm is located around the nucleus at the chalazal end and there are few numbers of channel-shaped endoplasmic reticulum, mitochondria, plastids and numerous ribosomes distributed throughout the cytoplasm. Unlike the egg cell, much of the cytoplasm in synergid cells is located at micropylar part of the cell and the synergid cytoplasm contains especially, large numbers of rough endoplasmic reticulum, free ribosomes, mitochondria and plastids. The central cell of <em>T. pratense</em> L. contains two large polar nuclei which lie close to the egg apparatus. Each polar nucleus has a single, large, dense nucleolus that contains several nucleolar vacuoles. Much of the central cell cytoplasm consisting of granular and agranular endoplasmic reticulum, mitochondria, plastids, ribosomes, dictyosomes and lipid bodies are placed around polar nuclei.


1985 ◽  
Vol 63 (2) ◽  
pp. 163-178 ◽  
Author(s):  
Ruilin You ◽  
William A. Jensen

The mature embryo sac of wheat contains an egg apparatus composed of an egg cell and two synergids at the micropylar end, a central cell with two large polar nuclei in the middle, and a mass of 20 to 30 antipodals at the chalazal end. A comparison was made of the ultrastructural features of the various cells of the embryo sac. The features included the position of the nucleus and vacuoles, the number, structure, and distribution of organelles, and the extent of the cell walls surrounding each cell. The pollen tube enters one synergid through the filiform apparatus from the micropyle. The penetration and discharge of the pollen tube causes the further degeneration of that synergid, which had already undergone changes before pollination. The second synergid does not change further in appearance following the penetration of the first by the pollen-altered tube. Half an hour after pollination at 20–25 °C, two male nuclei are seen in the cytoplasm of the egg and the central cell. At about 1 h after pollination, one sperm has made contact with the egg nucleus, while the other sperm is fusing with one of the polar nuclei.


2019 ◽  
Vol 60 (11) ◽  
pp. 2564-2572 ◽  
Author(s):  
Dukhyun Hwang ◽  
Satomi Wada ◽  
Azusa Takahashi ◽  
Hiroko Urawa ◽  
Yasuhiro Kamei ◽  
...  

Abstract Female gametophyte (FG) is crucial for reproduction in flowering plants. Arabidopsis thaliana produces Polygonum-type FGs, which consist of an egg cell, two synergid cells, three antipodal cells and a central cell. Egg cell and central cell are the two female gametes that give rise to the embryo and surrounding endosperm, respectively, after fertilization. During the development of a FG, a single megaspore produced by meiosis undergoes three rounds of mitosis to produce an eight-nucleate cell. A seven-celled FG is formed after cellularization. The central cell initially contains two polar nuclei that fuse during female gametogenesis to form the secondary nucleus. In this study, we developed a gene induction system for analyzing the functions of various genes in developing Arabidopsis FGs. This system allows transgene expression in developing FGs using the heat-inducible Cre-loxP recombination system and FG-specific embryo sac 2 (ES2) promoter. Efficient gene induction was achieved in FGs by incubating flower buds and isolated pistils at 35�C for short periods of time (1–5 min). Gene induction was also induced in developing FGs by heat treatment of isolated ovules using the infrared laser-evoked gene operator (IR-LEGO) system. Expression of a dominant-negative mutant of Sad1/UNC84 (SUN) proteins in developing FGs using the gene induction system developed in this study caused defects in polar nuclear fusion, indicating the roles of SUN proteins in this process. This strategy represents a new tool for analyzing the functions of genes in FG development and FG functions.


2014 ◽  
Vol 50 (1-2) ◽  
pp. 165-168 ◽  
Author(s):  
H. J. Wilms

The egg apparatus of <em>Spinacia</em> was studied from the time the embryo sac reaches its maximal size to just before fertilization, i.e., until about 8-9 hours after pollination. At maturity each synergid has a large elongated nucleus and prominent chalazal vacuoles, Numerous mitochondria, plastids, dictyosomes, free ribosomes, rough endoplasmic reticulum (RER), and lipid bodies are present. The cell wall exists only around the micropylar half of the synergids and each cell has a distinct, striated filiform apparatus. In general, degeneration of one synergid starts after pollination. The egg cell has a spherical nucleus and nucleolus and a large micropylar vacuole. Numerous mitochondria, some plastids with starch grains, dictyosomes, free ribosomes, and HER are present. A continuous cell wall is absent around the chalazal end of the egg cell.


1994 ◽  
Vol 72 (11) ◽  
pp. 1613-1628 ◽  
Author(s):  
M. Zaki ◽  
J. Kuijt

Embryo sac development of Viscum minimum was investigated using light and electron microscopy. Stages described involve uninucleate, binucleate, four-nucleate, and mature embryo sacs following cellularization. During the early stage of development, prior to mitosis, numerous small vacuoles are initiated in the cytoplasm of a uninucleate functional megaspore. The centrally located nucleus undergoes the first mitotic division and results in formation of two identical nuclei sharing a common cytoplasm. As the vacuole increases rapidly in size, the two nuclei become separated and move to opposite poles where the second mitotic division takes place. A remarkable elongation of the embryo sac is observed between the second and third mitotic division. Eventually, the embryo sac reaches its final length, two-thirds of the length of the ovary, at cellularization. Elongation of the embryo sac is closely related to the increase in vacuole size. Factors involved in vacuole formation and in the elongation of the embryo sac are discussed along with changes accompanying the transition from a sporophytic to a gametophytic pattern of development. Ultrastructural studies on the mature embryo sac, following cellularization, suggest that the egg cell is the least active cell in the megagametophyte. On the other hand, the synergids appear metabolically very active, being rich in plastids, mitochondria, dictyosomes, numerous vesicles, polysomes, and reserves. The central cell is the largest cell in the embryo sac. In a mature embryo sac the central cell has two adjacent nuclei, suggesting that fusion of the nuclei is completed following pollination and fertilization. The antipodals possess a complete set of organelles, numerous free and aggregated ribosomes, and endoplasmic reticulum. It is believed the antipodals play a significant nutritive role during the development of the embryo sac of V. minimum. Modification of the wall between antipodals and central cell and its role in nutrient transportations are discussed. Key words: embryo sac, embryogenesis, gametogenesis, megagametogenesis, mistletoes, ultrastructure.


1990 ◽  
Vol 3 (2) ◽  
pp. 265 ◽  
Author(s):  
P Rudall

Ovule and megagametophyte development is described for the first time in Ecdeiocoleaceae, a small Western Australian family that has affinities with Restionaceae. The mature embryo sac has an egg apparatus, but other nuclei usually degenerate. The nucellus proliferates at the chalazal end of the embryo sac to forma prominent cup-shaped region that has no obvious homologue among related families in Poales, or tother monocotyledons. The data confirm evidence from anatomy and pollen morphology that Ecdeiocolea does not belong in Restionaceae, but do not indicate obvious relationships with other families.


2014 ◽  
Vol 50 (1-2) ◽  
pp. 289-290 ◽  
Author(s):  
A. A. Van Lammeren

The megagametophyte of <em>Zea mays</em> L. undergoes a series of structural changes after fertilization resulting in a well differentiated mature embryo and cellular endosperm at 480 hours after pollination in greenhouse conditions. In the present work emphasis was laid on the localization of the cytoplasm in the synergids, central cell-endosperm and egg cell-zygote prior to and after fertilization. The observations are discussed in relation to the process of early embryogenesis.


1969 ◽  
Vol 46 (4) ◽  
pp. 254-268
Author(s):  
Niilo Virkki

Gunnera insignis (Oersted) D.C. is a halorhagacean plant from the mountains of Costa Rica, a giant species which can be considered as a potential ornamental. The chromosome relations of the whole genus Gunnera have been practically unknown. The diploid chromosome complement of Gunnera insignis consists of 34 acrocentric chromosomes of quite differ ent size. Both PMC and MMC meiosis are normal and vigorous, showing 17 bivalents in the first division. Absolute procentric localization of the first (or only) chiasma occurs in MMC. In PMC, the same tendency is seen in a couple of big bivalents. The rate of terminalization of chiasmata in the remaining PMC bivalents is low. The mature embryo sac of Gunnera insignis is tetrasporic, 16-nucleate, 2-phasic, and multipolar. It consists of an egg cell, a giant polyploid nucleus formed by fusion of 7 polar nuclei, and 6 antipodal cells. In exceptional cases 2 smaller fusion nuclei may occur instead of 1 large. This is considered a sign of an incomplete repolarization of the embryo sac nuclei.


Zygote ◽  
1993 ◽  
Vol 1 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Bing-Quan Huang ◽  
Elisabeth S. Pierson ◽  
Scott D. Russell ◽  
Antonio Tiezzi ◽  
Mauro Cresti

The cytoskeletal organisation of the isolated embryo sac and egg cells of Plumbago zeylanica was examined before, during and after pollen tube penetration into the embryo sac to determine the potential involvement of microtubules and actin filaments in fertilisation. Material was singly and triply stained using Hoechst 33258 to localise DNA, fluorescein isothiocyanate (FITC)-labelled anti- α-tubulin to detect microtubules and rhodamine-phalloidin to visualise F-actin. Microtubules in the unfertilised egg cell are longitudinally aligned in the micropylar and mid-lateral areas, aggregating into bundles near the filiform apparatus. In the perinuclear cytoplasm of the egg cell, microtubules become more or less randomly aligned. F-actin bundles form a longitudinally aligned mesh in the chalazal cytoplasm of the egg cell. In the central cell, microtubules and F-actin are distributed along transvacuolar strands and are also evident in the perinuclear region and at the periphery of the cell. During pollen tube penetration, sparse microtubule bundles near the pathway of the pollen tube may form an apparent microtubular ‘conduit’ surrounding the male gametes at the delivery site. Actin aggregates become organised near the pathway of the pollen tube and at the delivery site of the sperm cells. Subsequently, actin aggregates form a ‘corona’ structure in the intercellular region between the egg and central cell where gametic fusion occurs. The corona may have a role in maintaining the close proximity of the egg and central cell and helping the two sperm cells move and bind to their target cells. The cytoskeleton may also be involved in causing the two nuclei of the egg and central cell to approach one another at the site of gametic fusion and transporting the two sperm nuclei into alignment with their respective female nucleus. The cytoskeleton is reorganised during early embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document