Sudden death syndrome of soybean: etiology, symptomatology, and effects of irrigation and Heterodera glycines on incidence and severity under field conditions

1994 ◽  
Vol 72 (11) ◽  
pp. 1647-1653 ◽  
Author(s):  
J. Melgar ◽  
K. W. Roy ◽  
T. S. Abney

Soybeans were grown in field microplots in sterile, noninfested soil versus soil infested with either Fusarium solani (form A), Heterodera glycines (the soybean cyst nematode), or both. Symptoms of sudden death syndrome occurred on plants in soil containing F. solani or F. solani plus H. glycines. Signs (macroconidia) sometimes occurred on symptomatic roots. Fusarium solani was reisolated from symptomatic plants but not from asymptomatic ones. Histological data further confirmed F. solani as the causal agent and documented the presence of F. solani chlamydospores in infected roots and cysts. Fusarium solani was not isolated from surface-disinfested seeds of infected plants. Irrigation increased disease incidence and severity. Heterodera glycines was not necessary for infection of plants by F. solani; however, when combined with F. solani, leaf symptoms occurred earlier and were more severe. Inoculation with F. solani plus H. glycines increased the incidence of tip dieback of pods, a disorder of uncertain cause. Fusarium solani was isolated in high frequency from roots of symptomatic plants sampled in the South and Midwest. However, F. solani form B was the most common isolate from roots. A significant positive correlation occurred between incidence of the two F. solani forms in roots of symptomatic plants. Key words: Glycine max, Fusarium solani, Heterodera glycines, etiology.

Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2137-2143 ◽  
Author(s):  
Yuba R. Kandel ◽  
Kiersten A. Wise ◽  
Carl A. Bradley ◽  
Martin I. Chilvers ◽  
Adam M. Byrne ◽  
...  

A three-year study was conducted in Illinois, Indiana, Iowa, Michigan, and Ontario, Canada, from 2013 through 2015 to determine the effect of soybean (Glycine max) cultivars’ source of soybean cyst nematode (SCN; Heterodera glycines) resistance on SCN population densities, sudden death syndrome (SDS; caused by Fusarium virguliforme), and yield of soybean. Five cultivars were evaluated with and without fluopyram seed treatment at each location. Cultivars with no SCN resistance had greater SDS severity, greater postharvest SCN egg counts (Pf), and lower yield than cultivars with plant introduction (PI) 548402 (Peking) and PI 88788-type of SCN resistance (P < 0.05). Cultivars with Peking-type resistance had lower Pf than those with PI 888788-type and no SCN resistance. In two locations with HG type 1.2-, cultivars with Peking-type resistance had greater foliar disease index (FDX) than cultivars with PI 88788-type. Fluopyram seed treatment reduced SDS and improved yield compared with a base seed treatment but did not affect SCN reproduction and Pf (P > 0.05). FDX and Pf were positively correlated in all three years (P < 0.01). Our results indicate that SDS severity may be influenced by SCN population density and HG type, which are important to consider when selecting cultivars for SCN management.


Crop Science ◽  
1999 ◽  
Vol 39 (4) ◽  
pp. 982-987 ◽  
Author(s):  
R. R. Prabhu ◽  
V. N. Njiti ◽  
B. Bell‐Johnson ◽  
J. E. Johnson ◽  
M. E. Schmidt ◽  
...  

2011 ◽  
Vol 101 (7) ◽  
pp. 878-886 ◽  
Author(s):  
Andreas Westphal ◽  
Lijuan Xing

The ecology of the complex of soybean cyst nematode (SCN) and sudden death syndrome (SDS) of soybean was investigated under soybean monoculture in two field experiments from 2003 to 2007. Initially, susceptible soybean ‘Spencer’ was planted while inoculating Fusarium virguliforme into nonfumigated or preseason-fumigated plots (methyl bromide, MB, at 450 kg/ha), and SCN and SDS were monitored. In one field, SCN population densities declined in nonfumigated but increased in fumigated plots. After years of limited SDS in 2003 and 2004, SDS developed later in nonfumigated than fumigated plots. In 2006 in the greenhouse, nondisturbed or disturbed soil cores (10-cm diameter, 30-cm depth) from field plots received two two-level factors: (i) nonfumigated or fumigated (1,070 kg/ha MB); and (ii) noninoculated or inoculated with 9,000 second-stage juveniles of SCN. At harvest, nonfumigated cores from nonfumigated plots had fewer nematodes and less SDS regardless of disturbance or inoculation than the corresponding fumigated cores and any cores from fumigated plots. In the second field, SCN became detectable after 2003 during the monoculture in nonfumigated plots and lagged in fumigated plots; both treatments had low levels of SDS. Exploiting the suppressiveness of the first field could allow for biological control of SDS and SCN in soybean production.


Plant Disease ◽  
1997 ◽  
Vol 81 (5) ◽  
pp. 515-518 ◽  
Author(s):  
G. L. Hartman ◽  
Y. H. Huang ◽  
R. L. Nelson ◽  
G. R. Noel

Sudden death syndrome (SDS) is an important soybean disease that potentially can be controlled by host plant resistance. In this study, over 800 soybean plant introductions (PIs), lines, and cultivars were screened for resistance to Fusarium solani. Of 728 PIs from China, PI 567.374 had mean foliar SDS severities significantly (P = 0.05) lower than PI 520.733 (resistant check) in both growth-chamber and greenhouse tests. In addition, PIs 567.315, 567.441C, 567.650B, and 567.664 had mean SDS severity ratings significantly (P = 0.05) lower than PI 520.733 in a growth-chamber test. Of 16 soybean cyst nematode-resistant entries tested, 5 had values lower than the resistant check, PI 520.733, with cv. Hartwig significantly lower in the first trial. In trial two, no entries were lower than the resistant check, although cvs. Bell and Hartwig were not significantly different from PI 520.733. In another experiment, few soybean cultivars or experimental lines had SDS severity ratings lower than PI 520.733 in any one of three trials. Some of the newly acquired PIs from China that exhibited low foliar SDS severity ratings may provide the sources of resistance needed to develop new SDS-resistant soybean breeding lines and cultivars.


2006 ◽  
Vol 96 (7) ◽  
pp. 763-770 ◽  
Author(s):  
Lijuan Xing ◽  
Andreas Westphal

Sudden death syndrome (SDS) of soybean is caused by the soilborne Fusarium solani f. sp. glycines (synonym F. virguliforme). In a sequential approach, two multifactor factorial-design microplot experiments were conducted to investigate the effects of fungal infestation levels and soil moisture on both root necrosis and foliar SDS severity, and the interaction between F. solani f. sp. glycines and Heterodera glycines in fumigated versus nonfumigated soil. In 2003, soybean cv. Spencer was grown in nonfumigated or methyl bromide-fumigated soil and infested with increasing levels of F. solani f. sp. glycines, either under rainfall or irrigated after growth stage V6/R1. In 2004, interactions between F. solani f. sp. glycines and H. glycines were explored in a factorial inoculation design in fumigated or nonfumigated soil, planted to Williams 82 or Cyst-X20-18. In both years, higher levels of foliar SDS severity and root necrosis were found in F. solani f. sp. glycines-infested soils with H. glycines than in soils without the nematode on the soybean cultivars susceptible to both pathogens. Both natural infestations of H. glycines in 2003 and artificially amended populations of H. glycines in 2004 contributed to higher foliar SDS severity. More severe foliar SDS symptoms always were associated with more root necrosis, but elevated levels of root necrosis did not predict severe leaf symptoms. In contrast to the critical role of H. glycines, increasing fungal infestation levels had no significant effects on increasing either foliar SDS symptoms or root necrosis. Effects of moisture regime and fungal infestation levels also were examined in factorial greenhouse and growth chamber experiments. High soil moisture resulted in higher levels of SDS root necrosis. In the greenhouse, root necrosis increased at a higher rate in low soil moisture than the rate in high soil moisture. The two pathogens acted as a complex and the disease development was strongly dependent on high soil moisture.


Sign in / Sign up

Export Citation Format

Share Document