scholarly journals Effect of Soybean Cyst Nematode Resistance Source and Seed Treatment on Population Densities of Heterodera glycines, Sudden Death Syndrome, and Yield of Soybean

Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2137-2143 ◽  
Author(s):  
Yuba R. Kandel ◽  
Kiersten A. Wise ◽  
Carl A. Bradley ◽  
Martin I. Chilvers ◽  
Adam M. Byrne ◽  
...  

A three-year study was conducted in Illinois, Indiana, Iowa, Michigan, and Ontario, Canada, from 2013 through 2015 to determine the effect of soybean (Glycine max) cultivars’ source of soybean cyst nematode (SCN; Heterodera glycines) resistance on SCN population densities, sudden death syndrome (SDS; caused by Fusarium virguliforme), and yield of soybean. Five cultivars were evaluated with and without fluopyram seed treatment at each location. Cultivars with no SCN resistance had greater SDS severity, greater postharvest SCN egg counts (Pf), and lower yield than cultivars with plant introduction (PI) 548402 (Peking) and PI 88788-type of SCN resistance (P < 0.05). Cultivars with Peking-type resistance had lower Pf than those with PI 888788-type and no SCN resistance. In two locations with HG type 1.2-, cultivars with Peking-type resistance had greater foliar disease index (FDX) than cultivars with PI 88788-type. Fluopyram seed treatment reduced SDS and improved yield compared with a base seed treatment but did not affect SCN reproduction and Pf (P > 0.05). FDX and Pf were positively correlated in all three years (P < 0.01). Our results indicate that SDS severity may be influenced by SCN population density and HG type, which are important to consider when selecting cultivars for SCN management.

Plant Disease ◽  
2003 ◽  
Vol 87 (8) ◽  
pp. 929-932 ◽  
Author(s):  
T. L. Niblack ◽  
J. A. Wrather ◽  
R. D. Heinz ◽  
P. A. Donald

The soybean cyst nematode, Heterodera glycines, is the most economically important pathogen of soybean in Missouri. Knowledge of the nematode's distribution and ability to adapt to resistant varieties is important for determining crop losses and establishing research priorities. No previous surveys of Missouri have provided reliable population density and phenotypic diversity data; therefore, we conducted a random survey to obtain both. Two samples from each of 200 fields were collected; 392 samples were processed for extractions of cysts and eggs. Two hundred and forty seven (63%) of the samples had detectable cyst nematode populations, which ranged from 15 to 149,700 eggs per 250 cm3 of soil. The lowest average population densities were observed in the east-central region of Missouri (2,260 eggs per 250 cm3 of soil), and the highest were observed in the northeast (9,238 eggs per 250 cm3 of soil), but among the eight regions sampled, mean population densities did not differ significantly. These population densities were potentially responsible for losses worth over $58 million in 1999 in Missouri. Race tests were conducted on populations from 183 samples. In order of frequency, races 3, 1, and 2 accounted for 86% of H. glycines populations. Nearly 60% of the populations were virulent (able to produce females) on plant introduction (PI) 88788, which is the source of resistance for most H. glycines-resistant cultivars. More than a third of the populations were virulent on cv. Peking, another common resistance source. Very few populations were virulent on PI 90763 or PI 437654, suggesting that these sources of resistance should be exploited more frequently.


2017 ◽  
Vol 18 (3) ◽  
pp. 146-155 ◽  
Author(s):  
Michael T. McCarville ◽  
Christopher C. Marett ◽  
Mark P. Mullaney ◽  
Gregory D. Gebhart ◽  
Gregory L. Tylka

Management of the soybean cyst nematode (SCN) relies heavily on use of SCN-resistant soybean varieties to limit nematode reproduction and minimize yield loss. For Iowa, almost all SCN-resistant soybean varieties contain SCN resistance genes from a breeding line named Plant Introduction (PI) 88788. Iowa State University conducts experiments to evaluate numerous SCN-resistant and three to four SCN-susceptible soybean varieties in up to nine field experiments across Iowa each year. Data on SCN population density, virulence (SCN race and HG type), soybean yield, precipitation, and growing degree days from more than 25,000 four-row plots in field experiments conducted from 2001 to 2015 were analyzed to determine how these factors affected SCN reproduction and yield. SCN population densities were positively correlated with temperatures and negatively associated with precipitation during the growing seasons, indicating that SCN reproduction was greatest in hot, dry years. Over the years, virulence of SCN populations on PI 88788 increased in the fields in which the experiments were conducted, resulting in increased end-of-season SCN population densities and reduced yields of SCN-resistant soybean varieties with the PI 88788 source of resistance. These results indicate that soybean yield loss caused by SCN on resistant varieties with the common PI 88788 source of resistance likely will increase as virulence of SCN populations increases unless new sources of resistance become widely available and used in the future.


2021 ◽  
Vol 25 (03) ◽  
pp. 735-741
Author(s):  
Xiujuan Yan

Jilin is the dominant soybean production province in China. Soybean cyst nematode [Heterodera glycines] (SCN) is one of the most important yield-limiting factors in soybean production. Information about the distribution and virulence phenotypes of SCN in soybean fields are essential for optimizing varieties choice in the region. The distribution and virulence phenotypes of SCN in 141 soil samples from 38 cites (cities, counties and towns) across Jilin province were investigated. One hundred and four (73.76%) of the samples from all 38 cities (counties, towns) tested positive for SCN and SCN population densities were more than 5 cysts/100 mL soil in 53 samples from 27 cities (counties, towns). In those 53 samples, we identified 7 races and 12 Heterodera glycines (HG) types, with Race 3 and HG Type 7 being the most dominant genotypes. Of all the genotypes identified, Race10 and HG Type 1.7 were found for the first time in China, and HG Type 3.4.5.7 was the first reported worldwide. Thirty-eight SCN populations (34.5%) were virulent on plant introduction (PI) 548316 (#7) and 15 of them had female indices (FI) ≥ 10% on Pickett. PI 548316 and Pickett were not recommended as parents of breeding against cyst nematode in Jilin province. Peking-type resistance sources were preferred to pi88788-type in Jilin province. In addition, it was found neither the race nor HG scheme is sufficient for differentiating SCN populations in Jilin province, nor the combination of the two methods is recommended for studying the genetic diversity of SCN in Jilin province. That is, Pickett which was removed in HG scheme should be included not as an indicator line but just to separate different races from the same HG type. © 2021 Friends Science Publishers


Plant Disease ◽  
2004 ◽  
Vol 88 (11) ◽  
pp. 1287-1287 ◽  
Author(s):  
C. A. Bradley ◽  
C. R. Biller ◽  
B. D. Nelson

During August 2003, soybean (Glycine max) plants from Richland County, North Dakota with white-to-yellow, lemon-shaped structures on the roots were brought to the North Dakota State University Plant Diagnostic Laboratory. To confirm that the structures were females of a cyst nematode, they were crushed and observed microscopically to determine if nematode eggs and second-stage juveniles were present. Morphology of the second-stage juveniles was consistent with Heterodera glycines, the soybean cyst nematode (SCN). A survey was conducted in soybean fields in 34 km2 around the field in which the samples originated. Ten of twenty fields surveyed had visible females on the roots of plants. Symptoms observed in those fields included patches of stunted, chlorotic, and dead plants. Soil samples were collected from selected areas within eight fields, eggs were extracted using standard soil sieving techniques, and egg numbers were determined. Egg numbers ranged from 550 to 20,000 eggs per 100 cm3 of soil. SCN collected from two different fields, designated as Dwight and LaMars, were used to determine their HG Type. Standardized procedures (1) were used in a growth chamber set at 27°C with 16-h days. Pots in the test were organized in a completely randomized design with three replicates; the test was repeated over time. After 30 days, females were extracted from roots and counted, and a female index (FI) was calculated for each indicator line (1). The mean number of females on susceptible standard cv. Lee 74, was 110. The Dwight SCN population had an FI of 5.3 on plant introduction (PI) 88788, 1.5 on PI 209332, 5.8 on PI 548316 (Cloud), and 0 on all other indicator lines. The LaMars population had an FI of 1.0 on PI 88788, 3.1 on PI 548316 (Cloud), and 0 on all other indicator lines. These results indicate that both SCN populations tested are HG Type 0. To our knowledge, this is the first report of SCN on soybean in North Dakota. Because other hosts of SCN, as well as soybean, are economically important in North Dakota, such as dry edible bean (Phaseolus vulgaris) and dry pea (Pisum sativum), this disease could adversely impact several commodities throughout the state. Reference: (1) T. L. Niblack et al. J. Nematol. 34:279, 2002.


2014 ◽  
Vol 15 (1) ◽  
pp. 1-8 ◽  
Author(s):  
L. F. Brzostowski ◽  
W. T. Schapaugh ◽  
P. A. Rzodkiewicz ◽  
T. C. Todd ◽  
C. R. Little

Fusarium virguliforme, the soilborne fungus that causes sudden death syndrome (SDS), and Heterodera glycines, the soybean cyst nematode (SCN), are economically important pathogens that often occur concomitantly in Kansas soybean fields. To examine F. virguliforme and H. glycines interactions across multiple environments, four soybean genotypes with different levels of resistance to SDS and SCN were planted at three to four locations in northeastern Kansas in 2008 and 2009. Pathogen population densities were quantified at planting (Pi), midseason (Pm), and harvest (Pf). At harvest, SDS AUDPC, F. virguliforme root population densities, H. glycines reproductive factors (RF), and yield were determined. The performance of resistant (R) genotypes varied with environment and disease pressure, but SDS-R genotypes were associated with 36% greater yields than SDS-susceptible (S) genotypes in high SDS environments. Even moderate levels of SCN resistance reduced SDS disease severity in SDS-S genotypes. Negative correlations (P ≤ 0.05) were observed between yield and AUDPC, and yield and F. virguliforme root population densities. A regression model that combined both of these covariates explained 57% of the yield variation. Disease severity was positively correlated with H. glycines Pi, but negatively correlated with RF. The data emphasize the importance of combining SDS and SCN host resistance in fields with a history of both diseases. Accepted for publication 6 November 2013. Published 27 January 2014.


1994 ◽  
Vol 72 (11) ◽  
pp. 1647-1653 ◽  
Author(s):  
J. Melgar ◽  
K. W. Roy ◽  
T. S. Abney

Soybeans were grown in field microplots in sterile, noninfested soil versus soil infested with either Fusarium solani (form A), Heterodera glycines (the soybean cyst nematode), or both. Symptoms of sudden death syndrome occurred on plants in soil containing F. solani or F. solani plus H. glycines. Signs (macroconidia) sometimes occurred on symptomatic roots. Fusarium solani was reisolated from symptomatic plants but not from asymptomatic ones. Histological data further confirmed F. solani as the causal agent and documented the presence of F. solani chlamydospores in infected roots and cysts. Fusarium solani was not isolated from surface-disinfested seeds of infected plants. Irrigation increased disease incidence and severity. Heterodera glycines was not necessary for infection of plants by F. solani; however, when combined with F. solani, leaf symptoms occurred earlier and were more severe. Inoculation with F. solani plus H. glycines increased the incidence of tip dieback of pods, a disorder of uncertain cause. Fusarium solani was isolated in high frequency from roots of symptomatic plants sampled in the South and Midwest. However, F. solani form B was the most common isolate from roots. A significant positive correlation occurred between incidence of the two F. solani forms in roots of symptomatic plants. Key words: Glycine max, Fusarium solani, Heterodera glycines, etiology.


Crop Science ◽  
1999 ◽  
Vol 39 (4) ◽  
pp. 982-987 ◽  
Author(s):  
R. R. Prabhu ◽  
V. N. Njiti ◽  
B. Bell‐Johnson ◽  
J. E. Johnson ◽  
M. E. Schmidt ◽  
...  

2011 ◽  
Vol 101 (7) ◽  
pp. 878-886 ◽  
Author(s):  
Andreas Westphal ◽  
Lijuan Xing

The ecology of the complex of soybean cyst nematode (SCN) and sudden death syndrome (SDS) of soybean was investigated under soybean monoculture in two field experiments from 2003 to 2007. Initially, susceptible soybean ‘Spencer’ was planted while inoculating Fusarium virguliforme into nonfumigated or preseason-fumigated plots (methyl bromide, MB, at 450 kg/ha), and SCN and SDS were monitored. In one field, SCN population densities declined in nonfumigated but increased in fumigated plots. After years of limited SDS in 2003 and 2004, SDS developed later in nonfumigated than fumigated plots. In 2006 in the greenhouse, nondisturbed or disturbed soil cores (10-cm diameter, 30-cm depth) from field plots received two two-level factors: (i) nonfumigated or fumigated (1,070 kg/ha MB); and (ii) noninoculated or inoculated with 9,000 second-stage juveniles of SCN. At harvest, nonfumigated cores from nonfumigated plots had fewer nematodes and less SDS regardless of disturbance or inoculation than the corresponding fumigated cores and any cores from fumigated plots. In the second field, SCN became detectable after 2003 during the monoculture in nonfumigated plots and lagged in fumigated plots; both treatments had low levels of SDS. Exploiting the suppressiveness of the first field could allow for biological control of SDS and SCN in soybean production.


Sign in / Sign up

Export Citation Format

Share Document