Optical properties of leaves in relation to anthocyanin concentration and distribution

2000 ◽  
Vol 77 (12) ◽  
pp. 1777-1782 ◽  
Author(s):  
Sam Neill ◽  
Kevin S Gould

We have tested the tacit assumption that the location of anthocyanic cells within a leaf affects the quality and quantity of light that is absorbed. Leaf optics are described for Quintinia serrata A. Cunn., a native New Zealand tree that is polymorphic for anthocyanin distribution and concentration. Anthocyanin production enhanced the absorptance of green-yellow wavelengths in proportion to pigment concentration. The reflectance of red light was independent of leaf anthocyanin content. Variation in the location of pigmented cells could not account for differences in leaf optics. The effects of anthocyanin on PAR absorptance were consistent across six further, unrelated species that bore red leaves. We conclude that anthocyanin concentration, rather than its histological distribution, has the greater impact on leaf optical properties.


HortScience ◽  
2016 ◽  
Vol 51 (9) ◽  
pp. 1111-1120 ◽  
Author(s):  
Dominic P. Petrella ◽  
James D. Metzger ◽  
Joshua J. Blakeslee ◽  
Edward J. Nangle ◽  
David S. Gardner

Anthocyanins are plant pigments that are in demand for medicinal and industrial uses. However, anthocyanin production is limited due to the harvest potential of the species currently used as anthocyanin sources. Rough bluegrass (Poa trivialis L.) is a perennial turfgrass known for accumulating anthocyanins, and may have the potential to serve as a source of anthocyanins through artificial light treatments. The objectives of this research were to determine optimal light conditions that favor anthocyanin synthesis in rough bluegrass, and to determine the suitability of rough bluegrass as a source of anthocyanins. When exposed to high-intensity white light, rough bluegrass increased anthocyanin content by 100-fold on average, and anthocyanin contents greater than 0.2% of dry tissue weight were observed in some samples. Blue light, at intensities between 150 and 250 μmol·m−2·s−1, was the only wavelength that increased anthocyanin content. However, when red light was applied with blue light at 30% or 50% of the total light intensity, anthocyanin content was increased compared with blue light alone. Further experiments demonstrated that these results may be potentially due to a combination of photosynthetic and photoreceptor-mediated regulation. Rough bluegrass is an attractive anthocyanin production system, since leaf tissue can be harvested while preserving meristematic tissues that allow new leaves to rapidly grow; thereby allowing multiple harvests in a single growing season and greater anthocyanin yields.





Author(s):  
Hibiki M. Noda ◽  
Hiroyuki Muraoka ◽  
Kenlo Nishida Nasahara

AbstractThe need for progress in satellite remote sensing of terrestrial ecosystems is intensifying under climate change. Further progress in Earth observations of photosynthetic activity and primary production from local to global scales is fundamental to the analysis of the current status and changes in the photosynthetic productivity of terrestrial ecosystems. In this paper, we review plant ecophysiological processes affecting optical properties of the forest canopy which can be measured with optical remote sensing by Earth-observation satellites. Spectral reflectance measured by optical remote sensing is utilized to estimate the temporal and spatial variations in the canopy structure and primary productivity. Optical information reflects the physical characteristics of the targeted vegetation; to use this information efficiently, mechanistic understanding of the basic consequences of plant ecophysiological and optical properties is essential over broad scales, from single leaf to canopy and landscape. In theory, canopy spectral reflectance is regulated by leaf optical properties (reflectance and transmittance spectra) and canopy structure (geometrical distributions of leaf area and angle). In a deciduous broadleaf forest, our measurements and modeling analysis of leaf-level characteristics showed that seasonal changes in chlorophyll content and mesophyll structure of deciduous tree species lead to a seasonal change in leaf optical properties. The canopy reflectance spectrum of the deciduous forest also changes with season. In particular, canopy reflectance in the green region showed a unique pattern in the early growing season: green reflectance increased rapidly after leaf emergence and decreased rapidly after canopy closure. Our model simulation showed that the seasonal change in the leaf optical properties and leaf area index caused this pattern. Based on this understanding we discuss how we can gain ecophysiological information from satellite images at the landscape level. Finally, we discuss the challenges and opportunities of ecophysiological remote sensing by satellites.



2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yao Zhang ◽  
Jingfeng Huang ◽  
Fumin Wang ◽  
George Alan Blackburn ◽  
Hankui K. Zhang ◽  
...  


2021 ◽  
Vol 253 ◽  
pp. 112205
Author(s):  
Jingyi Jiang ◽  
Alexis Comar ◽  
Marie Weiss ◽  
Frédéric Baret


1997 ◽  
Vol 122 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Chen-Yi Hung ◽  
John R. Murray ◽  
Sarah M. Ohmann ◽  
Cindy B.S. Tong

The color of red potato tubers is due to an accumulation of anthocyanins in periderm and peripheral cortex tissues. The objective of this study was to characterize changes in anthocyanin content and tuber surface color during tuber development. Using the red tuber-producing potato (Solanum tuberosum L.) cultivar Norland, we observed that chroma (intensity of redness) and anthocyanin content per unit of surface area of greenhouse-grown tubers decreased as tuber weight increased. There was no increase in hue (tint) during the same developmental periods. Using high-performance liquid chromatography (HPLC), we determined that pelargonidin and peonidin are the major anthocyanidins (aglycones of anthocyanins) in the tuber periderm. Northern blot analyses indicated that steady-state mRNA levels of dihydroflavonol reductase (DFR), an anthocyanin biosynthetic enzyme, continued throughout tuber development. These results suggest that anthocyanins are synthesized throughout tuber development, and that cell division and/or enlargement contribute to a decline in chroma and anthocyanin concentration.



2017 ◽  
Vol 193 ◽  
pp. 204-215 ◽  
Author(s):  
J.-B. Féret ◽  
A.A. Gitelson ◽  
S.D. Noble ◽  
S. Jacquemoud




Author(s):  
Aleksandra Golob ◽  
Vekoslava Stibilj ◽  
Marijan Nečemer ◽  
Peter Kump ◽  
Ivan Kreft ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document